Opendata, web and dolomites

MagnonCircuits SIGNED

Nano-Scale Magnonic Circuits for Novel Computing Systems

Total Cost €


EC-Contrib. €






 MagnonCircuits project word cloud

Explore the words cloud of the MagnonCircuits project. It provides you a very rough idea of what is the project "MagnonCircuits" about.

transistor    opened    motion    physics    decrease    electron    magnetization    transformation    computing    yig    films    ingre    nonic    tection    carriers    fundamental    thickness    sized    materials    electronics    joule    generation    iron    effect    ena    material    momentum    realization    exchange    dimensional    overcome    translational    limita    dients    interaction    conduits    strategic    angular    mag    yttrium    magnetic    gate    nonlinear    form    compensate    excitation    transformative    models    circuits    wavelengths    quanta    magnons    pumping    spintronics    nm    dissipation    torque    magnonic    extremely    absence    transport    linear    fabrication    underlying    garnet    structures    course    paradigm    magnon    practical    regime    patterning    nanostructures    fast    nano    physical    revolutionary    width    damping    heat    waves    de    magnoncircuits    reached    quality    phenom    majority    proof    sizes    hall    spin    losses    transfer    nanometer    propagating    employment    toolbox    sub    ing    data    tions    dielectric    base    progress    dynamics   

Project "MagnonCircuits" data sheet

The following table provides information about the project.


Organization address
city: WIEN
postcode: 1010

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Project website
 Total cost 1˙487˙969 €
 EC max contribution 1˙487˙969 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-06-01   to  2021-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT WIEN AT (WIEN) coordinator 378˙044.00


 Project objective

Magnons – quanta of spin waves – propagating in magnetic materials having nano-scale wavelengths and carrying information in the form of a spin angular momentum, can be used as data carriers in next-generation nano-sized low-loss information processing systems. The low losses of magnonic systems can be reached due to the absence of translational electron motion associated with Joule heat-ing and extremely low magnetic damping in the dielectric Yttrium-Iron-Garnet (YIG) material used.

The recent revolutionary progress in the growth of high-quality YIG films with nanometer thickness, and in the patterning of these films, opened a way to the practical development of nano-scale mag-nonic computing systems. However, the decrease in sizes of YIG structures to sub-100 nm requires the development of the physical knowledge base for understanding linear and nonlinear magnetization dynamics in nanostructures.

The strategic goal of the proposed MagnonCircuits research program is to make a transformative change in the data processing paradigm from traditional electronics to magnon spintronics. The ingre-dients required for such a transformation and addressed by MagnonCircuits are: (i) The fabrication of magnon conduits of sub-100 nm width, the development of a toolbox enabling excitation and de-tection of fast exchange magnons, and the understanding of the physics underlying magnon dynamics at the nano-scale in the exchange interaction regime. (ii) Employment of such novel physical phenom-ena as spin pumping, spin transfer torque and spin Hall effect to overcome the fundamental limita-tions of the state-of-the-art approaches in magnon spintronics, and to compensate the dissipation in magnonic circuits. (iii) Realization of two-dimensional magnonic circuits required for transport and processing of magnon-carried data. A proof-of-concept models of two nano-scale devices – majority gate and magnon transistor – will be developed in the course of MagnonCircuits.


year authors and title journal last update
List of publications.
2019 Steffen Steinert
Detektion von Spinwellendynamik in YIG/Schwermetall Nano-Schichtsystemen
published pages: , ISSN: , DOI:
2019 O. V. Dobrovolskiy, R. Sachser, T. Brächer, T. Böttcher, V. V. Kruglyak, R. V. Vovk, V. A. Shklovskij, M. Huth, B. Hillebrands, A. V. Chumak
Magnon–fluxon interaction in a ferromagnet/superconductor heterostructure
published pages: 477-482, ISSN: 1745-2473, DOI: 10.1038/s41567-019-0428-5
Nature Physics 15/5 2019-11-07
2019 Q. Wang, R. Verba, T. Brächer, P. Pirro, A. V. Chumak
Integrated magnonic half-adder
published pages: , ISSN: , DOI:
arXiv 1902.02855 2019-11-07
2019 M. Mohseni, R. Verba, T. Brächer, Q. Wang, D. A. Bozhko, B. Hillebrands, P. Pirro
Backscattering Immunity of Dipole-Exchange Magnetostatic Surface Spin Waves
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.122.197201
Physical Review Letters 122/19 2019-11-07
2019 M. Schneider, T. Brächer, V. Lauer, P. Pirro, D. A. Bozhko, A. A. Serga, H. Yu. Musiienko-Shmarova, B. Heinz, Q. Wang, T. Meyer, F. Heussner, S. Keller, E. Th. Papaioannou, B. Lägel, T. Löber, V. S. Tiberkevich, A. N. Slavin, C. Dubs, B. Hillebrands, A.V. Chumak
Bose-Einstein Condensation of Quasi-Particles by Rapid Cooling
published pages: , ISSN: , DOI:
arXiv 1612.07305 2019-11-07
2019 B. Dieny, L. Prejbeanu, K. Garello, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. Demokritov, J. Akerman, P. Pirro, C. Adelmann, A. Anane, A. Chumak, A. Hiroata, S. Mangin, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez Diaz, O. Chubykalo-Fesenko, P. Bortolotti
The SpinTronicFactory roadmap: a European community view,
published pages: , ISSN: , DOI:
Scitech Europa 2019-11-07
2019 Q. Wang, T. Brächer, M. Mohseni, B. Hillebrands, V. I. Vasyuchka, A. V. Chumak, P. Pirro
Nanoscale spin-wave wake-up receiver
published pages: 92401, ISSN: 0003-6951, DOI: 10.1063/1.5109623
Applied Physics Letters 115/9 2019-11-07
2019 Q. Wang, B. Heinz, R. Verba, M. Kewenig, P. Pirro, M. Schneider, T. Meyer, B. Lägel, C. Dubs, T. Brächer, A. V. Chumak
Spin Pinning and Spin-Wave Dispersion in Nanoscopic Ferromagnetic Waveguides
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.122.247202
Physical Review Letters 122/24 2019-11-07
2019 B. Heinz, T. Brächer, M. Schneider, Q. Wang, B.Lägel, A. M. Friedel, D. Breitbach, S. Steinert, T. Meyer, M. Kewenig, C. Dubs, P. Pirro, A. V. Chumak
Propagation of coherent spin waves in individual nano-sized yttrium iron garnet magnonic conduits
published pages: , ISSN: , DOI:
arXiv 1910.08801 2019-11-07
2019 Q. Wang, M. Kewenig, M. Schneider, R. Verba, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, P. Pirro, T. Brächer, A. V. Chumak
Realization of a nanoscale magnonic directional coupler for all-magnon circuits
published pages: , ISSN: , DOI:
arXiv 1905.12353 2019-11-07
2019 Q. Wang
Linear and Nonlinear Spin Waves in Nanoscale Magnonic Structures for Data Processing
published pages: , ISSN: , DOI:
2017 A V Chumak, H Schultheiss
Magnonics: spin waves connecting charges, spins and photons
published pages: 300201, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aa7715
Journal of Physics D: Applied Physics 50/30 2019-11-06
2017 T. Fischer, M. Kewenig, D. A. Bozhko, A. A. Serga, I. I. Syvorotka, F. Ciubotaru, C. Adelmann, B. Hillebrands, A. V. Chumak
Experimental prototype of a spin-wave majority gate
published pages: 152401, ISSN: 0003-6951, DOI: 10.1063/1.4979840
Applied Physics Letters 110/15 2019-11-06
2017 Viktor Lauer, Michael Schneider, Thomas Meyer, Thomas Bracher, Philipp Pirro, Bjorn Heinz, Frank Heussner, Bert Lagel, Mehmet C. Onbasli, Caroline A. Ross, Burkard Hillebrands, Andrii V. Chumak
Temporal Evolution of Auto-Oscillations in an Yttrium-Iron-Garnet/Platinum Microdisk Driven by Pulsed Spin Hall Effect-Induced Spin-Transfer Torque
published pages: 1-4, ISSN: 1949-307X, DOI: 10.1109/LMAG.2017.2661243
IEEE Magnetics Letters 8 2019-11-06
2018 Qi Wang, Philipp Pirro, Roman Verba, Andrei Slavin, Burkard Hillebrands, Andrii V. Chumak
Reconfigurable nanoscale spin-wave directional coupler
published pages: e1701517, ISSN: 2375-2548, DOI: 10.1126/sciadv.1701517
Science Advances 4/1 2019-11-06
2017 A V Chumak, A A Serga, B Hillebrands
Magnonic crystals for data processing
published pages: 244001, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aa6a65
Journal of Physics D: Applied Physics 50/24 2019-11-06
2017 Qi Wang, Andrii V. Chumak, Lichuan Jin, Huaiwu Zhang, Burkard Hillebrands, Zhiyong Zhong
Voltage-controlled nanoscale reconfigurable magnonic crystal
published pages: 134433, ISSN: 2469-9950, DOI: 10.1103/PhysRevB.95.134433
Physical Review B 95/13 2019-11-06
2018 T. Brächer, P. Pirro
An analog magnon adder for all-magnonic neurons
published pages: 152119, ISSN: 0021-8979, DOI: 10.1063/1.5042417
Journal of Applied Physics 124/15 2019-11-06
2018 Keita Matsumoto, Thomas Brächer, Philipp Pirro, Tobias Fischer, Dmytro Bozhko, Moritz Geilen, Frank Heussner, Thomas Meyer, Burkard Hillebrands and Takuya Satoh
Optical determination of the exchange stiffness constant in an iron garnet
published pages: 70308, ISSN: 1347-4065, DOI: 10.7567/jjap.57.070308
Japanese Journal of Applied Physics 57/7 2019-11-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAGNONCIRCUITS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAGNONCIRCUITS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More  

CELPRED (2020)

Circuit elements of the cortical circuit for predictive processing

Read More  

TechChange (2019)

Technological Change: New Sources, Consequences, and Impact Mitigation

Read More