Opendata, web and dolomites

Relieve-Chol

Reprogramming cell identity to develop new therapies against Cholangiopathies

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Relieve-Chol project word cloud

Explore the words cloud of the Relieve-Chol project. It provides you a very rough idea of what is the project "Relieve-Chol" about.

reprograming    ing    transformed    modification    cholangiopathies    stem    display    hepatic    solution    differentiate    diseases    purposes    pharmaceutical    transplantation    hepatocytes    platform    modeling    animal    liver    small    hipscs    rarely    screening    protocol    drug    biliary    discovery    almost    form    disorders    clinical    create    line    capacity    patients    somatic    proliferate    generate    diversity    loosing    types    transport    genetic    stage    primary    cystic    maintaining    functional    compatible    vitro    cells    interestingly    biopsy    cholangiocytes    despite    validate    fibrosis    therapeutics    bile    pluripotent    quantity    intra    chemically    advantageous    direct    entire    industry    cure    grown    bypass    vivo    pathophysiology    recapitulate    indefinitely    hipsc    cell    tract    human    molecules    therapies    fulfill    differentiated    functions    consequently    models    relevance    culture    disease    urgent    acid    counterpart   

Project "Relieve-Chol" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙907 €
 EC max contribution 149˙907 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-PoC
 Funding Scheme ERC-POC
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 149˙907.00

Map

 Project objective

Intra- hepatic Cholangiocytes represent one of the main cell type of the liver with hepatocytes. They line the biliary tract and fulfill essential functions such as bile modification and transport. Cholangiocytes are targeted by a diversity of diseases including genetic disorders such as Cystic Fibrosis. There is currently no cure for disorders affecting cholangiocytes and end stage disease require liver transplantation. Importantly, primary cholangiocytes obtained from biopsy can not be grown in vitro without loosing their functional characteristics while transformed cells and animal models rarely recapitulate the entire pathophysiology of human diseases. Consequently, the development of novel drug and therapies remains problematic despite an urgent clinical need. Human induced pluripotent stem cells could provide an advantageous solution to bypass this major challenge. Indeed, these pluripotent stem cells are generated by direct reprograming of somatic cells and they can proliferate almost indefinitely in vitro while maintaining their capacity to differentiate into almost any cell types. Interestingly, hIPSC can be derived from patients with genetic disorders and then differentiated into the relevant cell types for disease modeling purposes. Of direct interest, we recently developed a protocol to generate cholangiocytes from hIPSCs using chemically define conditions. The resulting cells display functional characteristics of their in vivo counterpart including the capacity to transport bile acid. Here, we propose to enable our culture system for the production of large quantity of hIPSCs derived cholangiocytes in conditions compatible with the pharmaceutical industry requirements. The resulting cells will be then fully characterized to validate their relevance for modeling Cystic fibrosis and for testing small molecules. Thus, the overall objective of this project is to create a novel drug screening platform for the discovery of therapeutics targeting genetic form of cholangiopathies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RELIEVE-CHOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RELIEVE-CHOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

AST (2019)

Automatic System Testing

Read More  

SPECTRODOT (2018)

Hand-held broadband hybrid graphene-quantum dots spectrometer

Read More