Opendata, web and dolomites


Tuneable 2D Nanosheet Networks for Printed Electronics

Total Cost €


EC-Contrib. €






 FUTURE-PRINT project word cloud

Explore the words cloud of the FUTURE-PRINT project. It provides you a very rough idea of what is the project "FUTURE-PRINT" about.

networks    advancing    quantities    patterned    oh    bespoke    transmit    print    ideal    storage    layers    structure    exfoliated    electrical    wse2    nano    internet    electrochemically    ink    display    combine    ni    objects    engineered    displays    2d    conducting    mno2    realise    things    huge    types    suspensions    circuitry    revolutionise    translate    gas    semiconducting    volume    cells    network    mos2    materials    nanosheets    solution    electrodes    society    solar    vast    electronic    meet    nanosheet    crystals    deposited    phosphorous    assembly    active    layered    exfoliation    contiguous    transistors    black    unconventional    electronics    true    insulating    tune    cheaply    form    substrates    gather    heterostructures    family    porous    talc    mundane    printed    contain    moo3    tib2    transform    bn    inks    dielectrics    ing    components    graphene    mxenes    extremely    printing    energy    dispersed    device    area    liquid    amount    believe   

Project "FUTURE-PRINT" data sheet

The following table provides information about the project.


Organization address
address: College Green
city: DUBLIN
postcode: 2

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 2˙213˙316 €
 EC max contribution 2˙213˙316 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-11-01   to  2021-10-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

In the future, even the most mundane objects will contain electronic circuitry allowing them to gather, process, display and transmit information. The resulting vast network, often called the Internet of Things, will revolutionise society. To realise this will require the ability to produce electronic circuitry extremely cheaply, often on unconventional substrates. This will be achieved through printed electronics, by the assembly of devices from solution (i.e. ink) using methods adapted from printing technology. However, while printed electronics has been advancing rapidly, the development of new, nano-materials-based inks is required for this area to meet its true potential. We believe recent developments in liquid exfoliation of 2D nanosheets have given us the ideal family of materials to revolutionise electronic ink production. Liquid exfoliation can transform layered crystals into suspensions of nanosheets in very large quantities. In this way we can produce liquid-dispersed nanosheets of a wide range of types including conducting (e.g. graphene, MXenes, TiB2 etc), semiconducting (e.g. MoS2, WSe2, GaS, Black phosphorous etc), insulating (e.g. BN, talc) or electrochemically active (e.g. MoO3, Ni(OH)2, MnO2 etc). These nanosheets can be deposited from liquid to form porous networks of defined electronic type. While these networks have huge applications potential, a large amount of work must be done to translate them into working printed devices. In this project, we will develop methods to transform large volume suspensions of exfoliated nanosheets into bespoke 2D inks with properties engineered for a range of specific printed device applications. We will learn to use this 2D ink to print patterned or large area 2D nanosheet networks with controlled structure, allowing us to tune the electrical properties of the network during printing. We will combine networks of different nanosheet types into complex heterostructures. This will allow us to print all device components (electrodes, active layers, dielectrics, energy storage layers) from one contiguous, multi-component network. In this way we will produce 2D network transistors, solar cells, displays and energy storage systems. FUTURE-PRINT will revolutionise electronic inks and will offer a new path forward for printed electronics.


year authors and title journal last update
List of publications.
2019 Sonia Biccai, Conor S. Boland, Daniel P. O’Driscoll, Andrew Harvey, Cian Gabbett, Domhnall R. O’Suilleabhain, Aideen J. Griffin, Zheling Li, Robert J. Young, Jonathan N. Coleman
Negative Gauge Factor Piezoresistive Composites Based on Polymers Filled with MoS 2 Nanosheets
published pages: 6845-6855, ISSN: 1936-0851, DOI: 10.1021/acsnano.9b01613
ACS Nano 13/6 2019-12-16
2019 Sang-Hoon Park, Paul J. King, Ruiyuan Tian, Conor S. Boland, João Coelho, Chuanfang Zhang, Patrick McBean, Niall McEvoy, Matthias P. Kremer, Dermot Daly, Jonathan N. Coleman, Valeria Nicolosi
High areal capacity battery electrodes enabled by segregated nanotube networks
published pages: 560-567, ISSN: 2058-7546, DOI: 10.1038/s41560-019-0398-y
Nature Energy 4/7 2019-12-16
2019 Claudia Backes, Davide Campi, Beata M. Szydlowska, Kevin Synnatschke, Ezgi Ojala, Farnia Rashvand, Andrew Harvey, Aideen Griffin, Zdenek Sofer, Nicola Marzari, Jonathan N. Coleman, David D. O’Regan
Equipartition of Energy Defines the Size–Thickness Relationship in Liquid-Exfoliated Nanosheets
published pages: 7050-7061, ISSN: 1936-0851, DOI: 10.1021/acsnano.9b02234
ACS Nano 13/6 2019-12-16
2017 Adam G. Kelly, Toby Hallam, Claudia Backes, Andrew Harvey, Amir Sajad Esmaeily, Ian Godwin, João Coelho, Valeria Nicolosi, Jannika Lauth, Aditya Kulkarni, Sachin Kinge, Laurens D. A. Siebbeles, Georg S. Duesberg, Jonathan N. Coleman
All-printed thin-film transistors from networks of liquid-exfoliated nanosheets
published pages: 69-73, ISSN: 0036-8075, DOI: 10.1126/science.aal4062
Science 356/6333 2019-06-13
2017 Adam G Kelly, Conor Murphy, Victor Vega-Mayoral, Andrew Harvey, Amir Sajad Esmaeily, Toby Hallam, David McCloskey, Jonathan N Coleman
Tuneable photoconductivity and mobility enhancement in printed MoS 2 /graphene composites
published pages: 41006, ISSN: 2053-1583, DOI: 10.1088/2053-1583/aa8442
2D Materials 4/4 2019-06-13
2019 Domhnall O’Suilleabhain, Victor Vega-Mayoral, Adam G. Kelly, Andrew Harvey, Jonathan N. Coleman
Percolation Effects in Electrolytically Gated WS 2 /Graphene Nano:Nano Composites
published pages: 8545-8555, ISSN: 1944-8244, DOI: 10.1021/acsami.8b21416
ACS Applied Materials & Interfaces 11/8 2019-06-06
2017 Andrew Harvey, John B Boland, Ian Godwin, Adam G Kelly, Beata M Szydłowska, Ghulam Murtaza, Andrew Thomas, David J Lewis, Paul O’Brien, Jonathan N Coleman
Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand
published pages: 25054, ISSN: 2053-1583, DOI: 10.1088/2053-1583/aa641a
2D Materials 4/2 2019-06-06
2018 Cian Gabbett, Conor S. Boland, Andrew Harvey, Victor Vega-Mayoral, Robert J. Young, Jonathan N. Coleman
The Effect of Network Formation on the Mechanical Properties of 1D:2D Nano:Nano Composites
published pages: 5245-5255, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.8b01945
Chemistry of Materials 30/15 2019-06-06
2018 Aideen Griffin, Andrew Harvey, Brian Cunningham, Declan Scullion, Tian Tian, Chih-Jen Shih, Myrta Gruening, John F Donegan, Elton J. G. Santos, Claudia Backes, Jonathan N. Coleman
Spectroscopic Size and Thickness Metrics for Liquid-Exfoliated h -BN
published pages: 1998-2005, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.7b05188
Chemistry of Materials 30/6 2019-06-06
2019 Victor Vega-Mayoral, Ruiyuan Tian, Adam G. Kelly, Aideen Griffin, Andrew Harvey, Mino Borrelli, Katharina Nisi, Claudia Backes, Jonathan N. Coleman
Solvent exfoliation stabilizes TiS 2 nanosheets against oxidation, facilitating lithium storage applications
published pages: 6206-6216, ISSN: 2040-3364, DOI: 10.1039/c8nr09446b
Nanoscale 11/13 2019-06-06
2018 Andrew Harvey, Claudia Backes, John B. Boland, Xiaoyun He, Aideen Griffin, Beata Szydlowska, Cian Gabbett, John F. Donegan, Jonathan N. Coleman
Non-resonant light scattering in dispersions of 2D nanosheets
published pages: 4553, ISSN: 2041-1723, DOI: 10.1038/s41467-018-07005-3
Nature Communications 9/1 2019-06-06
2018 David McAteer, Ian J. Godwin, Zheng Ling, Andrew Harvey, Lily He, Conor S. Boland, Victor Vega-Mayoral, Beata Szydłowska, Aurélie A. Rovetta, Claudia Backes, John B. Boland, Xin Chen, Michael E. G. Lyons, Jonathan N. Coleman
Liquid Exfoliated Co(OH) 2 Nanosheets as Low-Cost, Yet High-Performance, Catalysts for the Oxygen Evolution Reaction
published pages: 1702965, ISSN: 1614-6832, DOI: 10.1002/aenm.201702965
Advanced Energy Materials 8/15 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FUTURE-PRINT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FUTURE-PRINT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

HOLI (2019)

Deep Learning for Holistic Inference

Read More