Opendata, web and dolomites

PhySound

Physically Based Simulation and Rendering of Thin Shell Sound

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PhySound project word cloud

Explore the words cloud of the PhySound project. It provides you a very rough idea of what is the project "PhySound" about.

manual    limited    visuals    tearing    leader    synchronization    student    frequency    bandwidth    model    crumpling    virtual    data    object    obtain    world    piece    hoc    skills    mature    complemented    modeling    precomputed    crushing    shells    standardization    phenomenal    optimal    shell    paper    family    synthesis    position    sound    transfer    environments    edition    extension    eld    ad    recorded    little    researcher    simulation    media    time    teaching    objects    inria    physically    cloth    secondment    effort    scenes    audiogaming    yielding    databases    visual    digital    trained    repetitive    setting    techniques    modern    cans    action    complementary    young    tutoring    life    generating    fellowship    digitally    independent    industrial    plastic    sonied    columbia    lms    sounds    devoted    video    games    university    training    bag    constrains    considerably    receive    industry    thin    expertise    rendering    bottles    widen   

Project "PhySound" data sheet

The following table provides information about the project.

Coordinator
INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE 

Organization address
address: DOMAINE DE VOLUCEAU ROCQUENCOURT
city: LE CHESNAY CEDEX
postcode: 78153
website: www.inria.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website https://team.inria.fr/graphdeco/en/projects/physound/
 Total cost 221˙635 €
 EC max contribution 221˙635 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-GF
 Starting year 2016
 Duration (year-month-day) from 2016-12-01   to  2019-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE FR (LE CHESNAY CEDEX) coordinator 221˙635.00
2    TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK US (NEW YORK) partner 0.00

Map

 Project objective

Sound is as important as visuals in modern media (lms, video-games). Yet, little effort has been devoted to the rendering of sound from digital environments, compared to the phenomenal advances of visual rendering. Virtual scenes are sonied through the ad-hoc edition of recorded sounds and their manual synchronization with the visuals, yielding limited and repetitive sounds. This proposal addresses this problem by generating sounds from virtual environments through physically based simulation, and focuses on a challenging family of objects: thin shells. Characteristic thin shell sounds include tearing cloth and paper, crushing cans and plastic bottles, and crumpling a piece of paper and a plastic bag. Sound synthesis of thin-shell sound will be addressed through a set of modeling techniques (model reduction, high frequency bandwidth extension and precomputed sound databases), while real-time constrains will be addressed using data-driven approaches. This project will considerably widen the number of real life object sounds that can be digitally generated, and will contribute to the young research eld of physically based sound rendering, which has the potential of becoming the next key technology of the media industry. The expertise of Columbia University in thin shells and sound rendering, complemented by the expertise of Inria in real-time sound rendering provide the optimal setting for the success of this fellowship. In addition, the researcher will receive training through research and on complementary skills, including student tutoring, teaching, dissemination, and project management. Industry-related skills, such as technology transfer, research-to-product techniques and standardization will be trained through a secondment in the industrial sector at AudioGaming. This Action will allow the researcher to become a mature and independent, and to obtain a long term research position in Europe as a world leader in physically based sound rendering.

 Publications

year authors and title journal last update
List of publications.
2018 Gabriel Cirio, Ante Qu, George Drettakis, Eitan Grinspun, Changxi Zheng
Multi-Scale Simulation of Nonlinear Thin-Shell Sound with Wave Turbulence
published pages: 1-14, ISSN: 0730-0301, DOI: 10.1145/3197517.3201361
ACM Transactions on Graphics 37/4 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PHYSOUND" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PHYSOUND" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More