Opendata, web and dolomites

LearningEmotions SIGNED

Emotion Recognition: A Statistical Learning Approach

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "LearningEmotions" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF READING 

Organization address
address: WHITEKNIGHTS CAMPUS WHITEKNIGHTS HOUSE
city: READING
postcode: RG6 6AH
website: http://www.rdg.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF READING UK (READING) coordinator 212˙933.00

Map

 Project objective

Statistical learning refers to the ability to learn through the discovery of patterns and structures. I propose to investigate emotion recognition using a statistical learning perspective in order to understand (i) why some emotions are harder to recognise than others; and (ii) why individuals with autism spectrum disorder (ASD individuals) have more difficulty recognising emotions than neurotypicals (i.e., individuals without autism).

I argue that part of the difficulty in recognising certain emotions lies in how reliable or consistent the auditory and visual cues are in signalling the emotion. That is, if particular cues consistently signal or have a high probability of signalling an emotion (e.g., 'happy' is consistently signaled by squinty eyes and grin/smile), then that emotion would be easier to recognise than emotions that are signalled by inconsistent cues (e.g., sarcasm may have varied expressions depending on the individual, context, etc. and so sarcasm would be more difficult to recognise). To investigate this, I will use an audio-visual emotion database that is currently under development to quantify the variability of cues across speakers in signalling the intended emotion.

I propose that the difficulty ASD individuals have with recognising emotions lies in a general difficulty with consolidating probabilistic information. In terms of emotion recognition, this would manifest as a difficulty with making a correct inference of the intended emotion given particular cues, which vary in their probabilities in signalling the emotion. To investigate this hypothesis, I will conduct a behavioural and a neural experiment comparing ASD individuals with neurotypicals on probabilistic learning to determine whether group differences exist and whether probabilistic learning is related to emotion recognition.

Outcomes of this project may inform intervention practices for ASD individuals and provide a general framework of understanding other ASD characteristics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEARNINGEMOTIONS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LEARNINGEMOTIONS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEAP (2019)

Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?

Read More  

MIRAGE (2019)

Measuring Interstellar Reactions of Aromatics by Gas-phase Experiments

Read More  

INFANTPATTERNS (2019)

Development of kinematic and muscle patterns in preterm infants

Read More