Opendata, web and dolomites

ULPIoT SIGNED

Ultra-Low Power and Highly-Scalable Interfaces for the Internet of Things

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ULPIoT project word cloud

Explore the words cloud of the ULPIoT project. It provides you a very rough idea of what is the project "ULPIoT" about.

full    demonstrators    extremely    contrary    solutions    nodes    linearity    occupy    scalability    era    scenario    ratio    interactions    circuit    ics    really    iot    view    operation    entity    power    extended    near    effectiveness    analog    consumption    verified    size    integration    noise    thinking    voltages    percentage    keeping    internet    intended    pace    objects    despite    diffusion    interacting       area    ic    5v    cmos    exploited    acquire    frontier    humans    data    soc    validated    nowadays    nanoscale    reference    network    substantially    limiting    hard    environment    circuits    interconnected    feasibility    globally    density    performance    degradation    signal    domain    scaling    things    more    fact    serious    functions    wearable    matching    capturing    voltage    threshold    blocks    world    technologies    bottleneck    foreseeable    die    autonomous    electronics    surrounding    re    digital    sensors    physical    shrinking    device    cross   

Project "ULPIoT" data sheet

The following table provides information about the project.

Coordinator
POLITECNICO DI TORINO 

Organization address
address: CORSO DUCA DEGLI ABRUZZI 24
city: TORINO
postcode: 10129
website: www.polito.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website https://sites.google.com/view/ulpiot/
 Total cost 247˙728 €
 EC max contribution 247˙728 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-GF
 Starting year 2017
 Duration (year-month-day) from 2017-02-01   to  2020-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    POLITECNICO DI TORINO IT (TORINO) coordinator 247˙728.00
2    NATIONAL UNIVERSITY OF SINGAPORE PUBLIC COMPANY LIMITED BY GUARANTEE SG (SINGAPORE) partner 0.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The era of the Internet of Things (IoT), in which every physical entity includes power-autonomous embedded electronics, capturing relevant information by sensors and interacting with objects and humans in a globally interconnected network, is bringing about new challenges in Integrated Circuit (IC) design. The performance of ICs in terms of integration density, power consumption and cost, in fact, is the only limiting factor to the feasibility and/or to the widespread diffusion of IoT-based solutions. Digital ICs in the most recent nanoscale CMOS technologies are keeping the pace of IoT requirements. On the contrary, the implementation of analog functions, which are however essential to acquire data from sensors, thus enabling the interactions of IoT nodes with the surrounding environment, is nowadays the real bottleneck and the most serious concern and limiting factor for the further development of IoT applications. In the foreseeable future, the planned device scaling and voltage reduction down to near threshold (e.g. 0.4-0.5V) makes the design of analog circuits extremely hard, in view of the degradation of signal-to-noise ratio, matching and linearity. Despite of device shrinking, traditional low-voltages analog circuits do not really scale down in size, and occupy a more and more relevant percentage (i.e., cost) of the die area. In this scenario, the proposed research activity is intended to substantially enhance the scalability of analog blocks with technology and voltage by re-thinking analog functions in ICs in digital terms. In a new cross-domain approach, design and testing methodologies from the digital world will be extended and frontier design concepts like near-threshold operation further exploited. The effectiveness of the proposed approach will be verified and validated on IC demonstrators and with reference to a full SoC for wearable electronics applications in the development of novel IoT solutions.

 Publications

year authors and title journal last update
List of publications.
2019 Orazio Aiello, Paolo Crovetti, Longyang Lin, Massimo Alioto
A pW-Power Hz-Range Oscillator Operating With a 0.3-1.8-V Unregulated Supply
published pages: 1-10, ISSN: 0018-9200, DOI: 10.1109/jssc.2018.2886336
IEEE Journal of Solid-State Circuits 2019-06-11
2019 Orazio Aiello, Paolo Stefano Crovetti, Massimo Alioto
Fully Synthesizable Low-Area Digital-to-Analog Converter With Graceful Degradation and Dynamic Power-Resolution Scaling
published pages: 1-11, ISSN: 1549-8328, DOI: 10.1109/tcsi.2019.2903464
IEEE Transactions on Circuits and Systems I: Regular Papers 2019-06-11

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ULPIOT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ULPIOT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More  

RealFlex (2019)

Real-time simulator-driver design and manufacturing based on flexible systems

Read More