Opendata, web and dolomites

LACRYMOSA SIGNED

Designing Multifunctional Self-Limiting Assembled Nanocrystal Superstructures and Monitoring their Self-Assembly at High Spatiotemporal Resolution

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LACRYMOSA project word cloud

Explore the words cloud of the LACRYMOSA project. It provides you a very rough idea of what is the project "LACRYMOSA" about.

uniformly    host    offers    ranging    usa    hybrid    solution    ordered    performed    andrei    assembled    magnetic    yielding    data    stages    of    whom    size    designing    assembly    effect    university    external    shape    templating    scope    characterization    competences    biosensing    particles    assembling    netherlands    ray    experiments    fellowship    imaging    nanoparticles    resolution    optoelectronics    sized    facilities    place    hine    structured    desired    synchrotron    morphology    time    nicholas    methodology    law    strategies    kotov    limiting    perspectives    self    terminal    situ    utrecht    modeling    hierarchical    monitoring    spatiotemporal    limited    structures    return    colloids    reaction    petukhov    michigan    mechanisms    storage    energy    insights    prof    organization    outgoing    fellow    chemical    nanocrystals    scattering    techniques    engineering    inorganic    multifunctional    parties    involve    institutes    assemblies   

Project "LACRYMOSA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT UTRECHT 

Organization address
address: HEIDELBERGLAAN 8
city: UTRECHT
postcode: 3584 CS
website: www.uu.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website http://www.lawhinedk.com
 Total cost 242˙929 €
 EC max contribution 242˙929 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-GF
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2020-10-08

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT UTRECHT NL (UTRECHT) coordinator 242˙929.00
2    UNIVERSITY OF MICHIGAN THE REGENTS OF THE UNIVERSITY OF MICHIGAN US (ANN ARBOR) partner 0.00

Map

 Project objective

This project focuses on the self-limited self-assembly of nanocrystals that involves inorganic particles assembling into highly ordered terminal structures. The design of such structures is still challenging but offers many perspectives for templating assemblies of desired shape and size, and for several applications ranging from optoelectronics to energy storage and biosensing. In this scope, the objectives of the proposal are structured around three main stages: (i) the chemical design of uniformly sized, hybrid magnetic/non-magnetic systems, (ii) the monitoring of the self-assembly reaction in situ using real-time measurement techniques, and (iii) the characterization of the effect of an applied external field on the morphology of the assembled structures. The chemical design methodology of the self-limiting complex particles will be investigated along with Prof. Nicholas Kotov (University of Michigan, USA) during the outgoing phase. X-ray scattering/imaging experiments yielding high spatiotemporal resolution will be performed in large-scale synchrotron facilities in the USA as well as in Europe during the return phase along with Prof. Andrei Petukhov (Utrecht University, Netherlands) with whom the effect of an applied magnetic field will be further studied. A collaboration between the two host institutes in Europe and USA will take place through this fellowship and will involve the competences of the three parties: in chemical engineering of hierarchical assemblies in solution (Prof. Kotov), in X-ray scattering/imaging for studying the self-organization of colloids (Prof. Petukhov) and in data analysis/modeling and X-ray scattering (the fellow Law-Hine). The project should bring new insights into the mechanisms of formation of self-limiting, multifunctional nanoparticles and provide strategies for designing these particles using external control fields.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LACRYMOSA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LACRYMOSA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More