Opendata, web and dolomites

LACRYMOSA SIGNED

Designing Multifunctional Self-Limiting Assembled Nanocrystal Superstructures and Monitoring their Self-Assembly at High Spatiotemporal Resolution

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LACRYMOSA project word cloud

Explore the words cloud of the LACRYMOSA project. It provides you a very rough idea of what is the project "LACRYMOSA" about.

resolution    size    monitoring    law    hierarchical    offers    andrei    scattering    optoelectronics    limiting    facilities    chemical    assembling    magnetic    mechanisms    particles    host    structured    university    techniques    morphology    parties    imaging    institutes    outgoing    designing    ordered    ray    solution    energy    structures    whom    nanoparticles    limited    nicholas    performed    fellowship    strategies    return    usa    place    situ    modeling    stages    multifunctional    assemblies    michigan    colloids    engineering    synchrotron    involve    inorganic    assembled    effect    external    biosensing    templating    petukhov    assembly    yielding    storage    methodology    hybrid    insights    of    reaction    desired    scope    fellow    sized    terminal    spatiotemporal    data    prof    utrecht    organization    uniformly    kotov    netherlands    perspectives    hine    ranging    competences    experiments    nanocrystals    time    characterization    self    shape   

Project "LACRYMOSA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT UTRECHT 

Organization address
address: HEIDELBERGLAAN 8
city: UTRECHT
postcode: 3584 CS
website: www.uu.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website http://www.lawhinedk.com
 Total cost 242˙929 €
 EC max contribution 242˙929 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-GF
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2020-10-08

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT UTRECHT NL (UTRECHT) coordinator 242˙929.00
2    UNIVERSITY OF MICHIGAN THE REGENTS OF THE UNIVERSITY OF MICHIGAN US (ANN ARBOR) partner 0.00

Map

 Project objective

This project focuses on the self-limited self-assembly of nanocrystals that involves inorganic particles assembling into highly ordered terminal structures. The design of such structures is still challenging but offers many perspectives for templating assemblies of desired shape and size, and for several applications ranging from optoelectronics to energy storage and biosensing. In this scope, the objectives of the proposal are structured around three main stages: (i) the chemical design of uniformly sized, hybrid magnetic/non-magnetic systems, (ii) the monitoring of the self-assembly reaction in situ using real-time measurement techniques, and (iii) the characterization of the effect of an applied external field on the morphology of the assembled structures. The chemical design methodology of the self-limiting complex particles will be investigated along with Prof. Nicholas Kotov (University of Michigan, USA) during the outgoing phase. X-ray scattering/imaging experiments yielding high spatiotemporal resolution will be performed in large-scale synchrotron facilities in the USA as well as in Europe during the return phase along with Prof. Andrei Petukhov (Utrecht University, Netherlands) with whom the effect of an applied magnetic field will be further studied. A collaboration between the two host institutes in Europe and USA will take place through this fellowship and will involve the competences of the three parties: in chemical engineering of hierarchical assemblies in solution (Prof. Kotov), in X-ray scattering/imaging for studying the self-organization of colloids (Prof. Petukhov) and in data analysis/modeling and X-ray scattering (the fellow Law-Hine). The project should bring new insights into the mechanisms of formation of self-limiting, multifunctional nanoparticles and provide strategies for designing these particles using external control fields.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LACRYMOSA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LACRYMOSA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ICL CHROM (2020)

DNA interstrand crosslink repair and chromatin remodelling

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More