Opendata, web and dolomites

Hy-solFullGraph SIGNED

New hybrid-nanocarbon allotropes based on soluble fullerene derivatives in combination with carbon nanotubes and graphene. Application in organic solar cells and biomaterials.

Total Cost €


EC-Contrib. €






 Hy-solFullGraph project word cloud

Explore the words cloud of the Hy-solFullGraph project. It provides you a very rough idea of what is the project "Hy-solFullGraph" about.

hybrid    solar    prepare    substituents    optoelectronic    electrical    applications    carbon    tailoring    functionalisation    selectively    assist    cells    performance    polyfluorinated    nanotechnology    changing    science    functional    chemistry    nanomaterials    superstructured    candidates    scas    unravelled    chemical    molecular    c60    packing    time    solfullgraph    transfer    regarded    behaviours    advantages    allotropes    advantage    fullerene    ultimately    nerve    herein    synthesis    cnt    tissue    optolectronical    hydrophilic    fullerenes    functionalise    electronic    biomedical    precise    reactivity    crossroads    organic    solubility    first    physical    attachment    decoration    synthetic    overarching    interactions    materials    regeneration    maximise    pattern    hy    assembly    covalent    levels    biomaterials    outstanding    derivatisation    graphene    play    endow    designed    hydrophobic    additional    tune    group    energy    supramolecular    synthesised   

Project "Hy-solFullGraph" data sheet

The following table provides information about the project.


Organization address
postcode: 91054

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2019-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The overarching goal of the Hy-solFullGraph project is to undertake, from a molecular level, the synthesis of new functional hybrid materials based on carbon allotropes with outstanding properties. Synthetic carbon allotropes (SCAs) are regarded to be among the most promising candidates for future high performance materials. Precise control of the derivatisation will play a key role in tailoring their solubility and reactivity to maximise the advantages of their outstanding properties. We propose herein 1) to selectively functionalise C60 fullerenes with different substituents (hydrophobic, hydrophilic, and polyfluorinated) to tune their solubility and their superstructured assembly. 2) By controlling the addition pattern, we will include an additional functional group which will facilitate their covalent attachment to other carbon allotropes such as graphene or CNT. In this way, new Hybrid-SCAs will be synthesised for the very first time and the interactions between the hybrid allotropes will be unravelled. 3) Moreover, by changing the chemical decoration around the allotropes, we will be able to endow them with different functionality for their application in optoelectronic and biomedical fields. For optoelectronic applications, such as the development of solar cells, we propose to tune the electronic interactions and energy levels of fullerene and graphene and to control the energy transfer processes and packing behaviours between the allotropes by well-designed chemical functionalisation. Furthermore, we will use the hydrophilic fullerenes to prepare functional biomaterials by taking advantage of their electrical properties to ultimately assist nerve tissue regeneration. The project will be developed at the crossroads of organic and supramolecular chemistry, materials science, nanotechnology and physical chemistry to produce novel synthetic hybrid carbon allotropes with tailored properties towards new nanomaterials for optolectronical and biomedical applications


year authors and title journal last update
List of publications.
2017 Tao Wei, M. Eugenia Pérez-Ojeda, Andreas Hirsch
The first molecular dumbbell consisting of an endohedral Sc 3 N@C 80 and an empty C 60 -fullerene building block
published pages: 7886-7889, ISSN: 1359-7345, DOI: 10.1039/C7CC03012F
Chemical Communications 53/56 2019-06-11
2018 M. Eugenia Pérez-Ojeda, Isabell Wabra, Christoph Böttcher, Andreas Hirsch
Fullerene Building Blocks with Tailor-Made Solubility and New Insights into Their Hierarchical Self-Assembly
published pages: 14088-14100, ISSN: 0947-6539, DOI: 10.1002/chem.201803036
Chemistry - A European Journal 24/53 2019-05-28

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HY-SOLFULLGRAPH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HY-SOLFULLGRAPH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

STRESS-Mums (2019)

Study on TRansition and Exclusion in Society of Single-Mums

Read More