Opendata, web and dolomites


Mechanisms of Immune Receptor Diversification in Cereals

Total Cost €


EC-Contrib. €






 MIREDI project word cloud

Explore the words cloud of the MIREDI project. It provides you a very rough idea of what is the project "MIREDI" about.

exactly    recognition    class    evolve    molecular    platform    normally    fusion    thought    receptor    pathogen    implicated    pathosystems    prone    germline    reverse    diverse    hundreds    ago    rates    diversified    binding    detect    vastly    deploy    gene    least    genomes    functions    mediate    500    mechanism    miredi    techniques    molecules    dissect    immune    limits    decoys    paradigm    fungi    co    nucleotide    million    decode    plant    mechanisms    activation    central    generating    mosses    bait    host    biology    ramifications    demonstrated    regulation    nematodes    nlr    young    diversity    domesticated    oomycetes    family    question    rice    fusions    bacteria    crops    combine    elusive    practical    diversification    pathogens    flowering    natural    grasses    domains    maize    disarm    encoded    originated    innate    plants    sensors    sequencing    function    effector    leucine    generate    viruses    insects    receptors    proteins    effectors    immunity    genetics    bioinformatics    wheat   

Project "MIREDI" data sheet

The following table provides information about the project.


Organization address
postcode: NR4 7UZ
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 1˙499˙997 €
 EC max contribution 1˙499˙997 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2022-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EARLHAM INSTITUTE UK (NORWICH) coordinator 882˙899.00
2    THE SAINSBURY LABORATORY UK (NORWICH) participant 617˙098.00


 Project objective

The plant immune system is innate – it is encoded in the germline. In natural pathosystems, plants efficiently deploy hundreds of immune receptors to detect and disarm rapidly evolving pathogens including viruses, bacteria, nematodes, insects, fungi and oomycetes. Exactly how such receptor diversity can evolve is an elusive question with important practical ramifications. A central class of plant immune receptors, called Nucleotide Binding Leucine Rich Repeats proteins (NLR), has been implicated in recognition of vastly diverse pathogen-derived effector molecules. An emerging paradigm of receptor diversification in plant genomes involves new gene fusions of receptors with host proteins that are normally targeted by pathogen effectors. Such fusion receptors ‘bait’ pathogens and their integrated domains are thought to function as ‘decoys’ or ‘sensors’ that mediate pathogen recognition. I have recently demonstrated that the mechanism of generating new receptors through gene fusions originated at least 500 million years ago in mosses and is common to all flowering plants. Here, I propose to decode the mechanisms of plant immune receptor diversification by gene fusions by studying diversity and functions of immune receptors in grasses, a young highly diversified plant family that includes the three most important crops: maize, rice and wheat. My specific aims are to:

1) Determine rates of receptor diversification within and across genomes 2) Dissect the mechanisms of receptor regulation and receptor activation 3) Generate novel plant immune receptors based on the NLR platform prone to fusions.

In this MIREDI research programme, I will combine state of the art sequencing techniques and bioinformatics, molecular biology and novel reverse genetics techniques to study how plant immune system co-evolves with pathogens and what limits diversification of immunity in domesticated crops.


year authors and title journal last update
List of publications.
2018 Schudoma, Christian; Jackson, William; Baggs, Erin; Moscou, Matthew; Krasileva, Ksenia; Dagdas, Gulay; Haerty, Wilfried; Bailey, Paul
Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions
published pages: 19-23, ISSN: 1664-462X, DOI: 10.1101/100834
Genome Biology 1 2019-07-19

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MIREDI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MIREDI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CN Identity (2019)

Comprehensive anatomical, genetic and functional identification of cerebellar nuclei neurons and their roles in sensorimotor tasks

Read More  

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More