Opendata, web and dolomites

iChip SIGNED

Intestine-on-a-chip for investigating microbioal-epithelail interaction

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 iChip project word cloud

Explore the words cloud of the iChip project. It provides you a very rough idea of what is the project "iChip" about.

insights    generate    bacteria    give    correlative    model    challenged    mechanisms    natural    sheer    lumen    fluidic    closely    mini    3d    forms    healthy    static    induces    peristalsis    prevent    expanded    shortcomings    world    epithelial    organs    diseases    intestinal    additionally    colonize    models    2d    chip    tissues    outer    microbial    mimic    occurrence    structures    pathogens    surface    tumor    topologically    cells    huge    stress    suppressed    occasionally    mimics    crohn    causing    lines    disease    ways    cell    vivo    first    microengineering    cultured    device    off    constitute    commensal    epithelium    human    found    reporting    physiology    therapeutic    time    tolerated    inside    villi    altogether    assayed    guts    pathogenic    partly    differently    small    react    difficult    microfluidics    interactions    animal    mouse    inflammation    overgrowth    microenvironment    intestine    worldwide    bacterial    overcome    primary    burden    causality    fought    gut    protects    luminal    mechanic    culture    barrier   

Project "iChip" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 212˙194 €
 EC max contribution 212˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2021-02-12

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 212˙194.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The small intestine forms a barrier that protects us against the outer world. Here commensal bacteria are tolerated while pathogens are effectively fought off. Occasionally, however, pathogenic bacteria colonize the intestine causing different diseases, which constitute a huge burden worldwide. The ability to study interactions of pathogenic bacteria with the intestine will provide new insights into the disease mechanisms, and new therapeutic targets and ways to prevent disease occurrence. Current animal and 2D models based on tumor cell lines both have shortcomings as they react differently to pathogenic bacteria when compared to healthy human tissues.

Primary intestinal epithelial cells can now be cultured as intestinal mini-guts, 3D mini organs. This has partly overcome some of these shortcomings with mouse models and tumor cell lines. These mini-guts are, however, challenged topologically as the intestinal lumen is facing towards the inside of the structures. This makes it difficult to access the luminal surface and study microbial interactions with the epithelium. Furthermore, the static culture conditions do not mimic the in vivo conditions closely enough.

I will use microfluidics and microengineering to develop an intestine-on-a-chip device based on primary human intestinal epithelial cells expanded as mini-guts but assayed on mimics of the natural villi structures found in the small intestine. Additionally, the model will allow the fluidic (sheer stress) and mechanic (peristalsis) microenvironment to be closely controlled in order to generate in vivo-like conditions. This is important to study as e.g. Crohn’s disease, that induces suppressed peristalsis, is associated with intestinal inflammation and bacterial overgrowth.

Altogether, this intestine-on-a-chip device will go beyond state-of-the-art and for the first time give causality to the number of correlative studies reporting on how commensal and pathogenic gut bacteria affect the human physiology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ICHIP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ICHIP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More