Opendata, web and dolomites


high-pressure HYdrogen booster for DistRibUted small-medium refuelling Stations

Total Cost €


EC-Contrib. €






 HYDRUS project word cloud

Explore the words cloud of the HYDRUS project. It provides you a very rough idea of what is the project "HYDRUS" about.

architecture    validate    mass    successful    business    introduce    refilling    eagerly    booster    200    refuelling    thrive    germany    sustainable    capacity    feasibility    breakthrough    rate    nm3    security    charging    sustainability    realization    coverage    direction    compressor    hydrus    cope    transport    mpa    mobility    proper    risk    reliability    adaptable    fuelling    bottleneck    suffer    plan    demanded    fulfil    initial    technologies    pressure    infrastructure    resilience    size    later    autonomy    electric    customers    disruptive    flexible    vision    significantly    hydraulic    give    protocols    potentially    sae    station    storage    limit    compression    400    modular    2023    600    time    safe    minutes    boost    medium    limits    performance    stations    intensifier    guideline    industrialize    investments    geographic    alternative    modules    perspective    vehicles    hydrogen    core    market    flow    infrastructures    decarbonise    expectations    opening    reducing    j2609    unavoidable    small    h2   

Project "HYDRUS" data sheet

The following table provides information about the project.


Organization address
address: VIA S ALLENDE 81
city: MODENA
postcode: 41122
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.4. (SOCIETAL CHALLENGES - Smart, Green And Integrated Transport)
2. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
3. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2017
 Duration (year-month-day) from 2017-02-01   to  2017-07-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IDRO MECCANICA SRL IT (MODENA) coordinator 50˙000.00


 Project objective

'The market of hydrogen refuelling stations is expected to thrive, with more than 400 stations by 2023 only in Germany. Hydrogen mobility is today the only reliable alternative to electric vehicles since it does not suffer the limits in autonomy and charging time affecting electric vehicles, opening promising perspective to decarbonise the transport mass-market. A widespread geographic coverage of the refuelling infrastructure is an unavoidable step to boost the hydrogen mobility, but the main bottleneck in the realization of this target is currently the high cost of refuelling stations. New cost-effective technologies for development of small-medium refuelling stations are eagerly demanded to give the initiative the proper initial sustainability. HYDRUS aims towards this direction, providing a breakthrough high-performance compressor and a flexible and modular architecture for the refuelling station enabling - to limit the initial costs of investments; - to scale the size of the infrastructure by later addition of new modules; - to increase the resilience, reliability and security of the refuelling infrastructure, by significantly reducing the size (or potentially avoid) of the high-pressure storage. The core of HYDRUS proposal is a 'Hydraulic driven intensifier' booster, allowing - Compression capacity above 90 MPa to cope with the new fuelling protocols set by the SAE J2609 guideline; - High flow rate (200-600 Nm3/h) during refilling of vehicles to fulfil the customers’ expectations of fuelling time in 3-5 minutes. Our vision is to introduce a disruptive refuelling technology to make infrastructures more sustainable, safe and adaptable to evolving needs of H2 mobility. The feasibility study aims to assess the opportunities and risk, as well as to plan the activities necessary - To industrialize Hydrus booster - To validate the HYDRUS architecture refuelling infrastructure - To test the potential target market to achieve a successful business exploitation'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYDRUS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYDRUS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.;H2020-EU.2.1.1.;H2020-EU.2.3.1.)

LEDVAR-Z (2018)

A New Paradigm for Efficient and Modern Rail Signalling

Read More  

SPEED-EU (2018)

Damping device to solve the pantograph-line capture problems, especially for the EU high-speed railways lines

Read More  

ChargeAtHome (2017)


Read More