Opendata, web and dolomites

MicACol

Microrheology of two-dimensional active colloidal crystals and glasses

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MicACol project word cloud

Explore the words cloud of the MicACol project. It provides you a very rough idea of what is the project "MicACol" about.

designed    synthetic    packed    behavior    passive    catalytic    colloidal    self    water    semi    made    originally    probe    physics    attractive    simulations    mechanical    reaction    near    platinum    partly    lot    tweezing    mimic    significantly    microorganims    unexplored    structure    phases    stems    homogeneous    elucidate    serve    quantify    particles    materials    forces    shed    entirely    ranged    configurations    difficulty    flat    crystals    desirable    propel    effort    light    hydrogen    close    monolayers    relation    motion    extensively    material    dense    intimate    brownian    active    optical    equipped    peroxide    engineer    primarily    repulsive    mix    microrheology    benchmarks    fundamental    instance    date    numerical    smart    colloids    nature    microswimmers    dispersed    oil    protocol    coated    contact    suspensions    living    propelling    assemble    dilute    structural    lag    interface    environments    loosely    confinements    amount    solid    glasses    fluctuations    experiments    invested   

Project "MicACol" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.buttinoni.co.uk/
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-04   to  2019-09-03

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00

Map

 Project objective

Self-propelling colloidal particles, originally designed to mimic living microorganims, offer exciting opportunities to engineer smart materials equipped with activity. To date, the behavior of synthetic microswimmers has been extensively studied in homogeneous environments, close to confinements and in semi-dilute suspensions. However, for materials’ design, the use of solid-like phases, such as crystals and glasses, is highly desirable. While recent numerical simulations have invested a lot of effort in understanding the structural and mechanical properties of dense colloidal materials with activity, experiments significantly lag behind. One difficulty stems, for instance, from the presence of short-range attractive forces that affect the active motion when two of more microswimmers come near contact.

In this project, we will investigate the mechanical properties of dense monolayers made partly or entirely of self-propelling colloids using microrheology. We will assemble colloidal monolayers at a flat oil/water interface, where long-ranged repulsive forces will lead to the formation of crystals and glasses with loosely-packed configurations, i.e. with particles that are far from contact. We will mix passive Brownian particles with a controlled amount of active platinum coated particles that self-propel due to a catalytic reaction with hydrogen peroxide dispersed in water. We will elucidate the intimate relation between structure, activity and mechanical properties of dense active suspensions using microrheology experiments, in which we will analyse the fluctuations of a probe driven through the active material by means of an optical tweezing. Our results will shed new light on the unexplored physics of active crystals and glasses and provide a protocol to quantify their mechanical properties. While the proposal research is primarily fundamental in nature, our findings will serve as benchmarks for the design of novel active materials and devices.

 Publications

year authors and title journal last update
List of publications.
2018 Kilian Dietrich, Giovanni Volpe, Muhammad Nasruddin Sulaiman, Damian Renggli, Ivo Buttinoni, Lucio Isa
Active Atoms and Interstitials in Two-Dimensional Colloidal Crystals
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.120.268004
Physical Review Letters 120/26 2019-11-07

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICACOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICACOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More