Opendata, web and dolomites

2DQOptics

Two dimensional materials for lasing and frequency metrology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 2DQOptics project word cloud

Explore the words cloud of the 2DQOptics project. It provides you a very rough idea of what is the project "2DQOptics" about.

envelope    damascene    lasers    entirely    photonic    contain    unambiguous    photocurrent    atomically    coupling    elucidate    quantum    modes    reported    improvement    frequency    broadening    micro    nanofabrication    integrate    discovered    effect    semi    optoelectronic    fundamental    double    realize    2d    physics    basic    possibilities    group    epfl    silica    integration    feedback    stablize    alike    validate    comb    whispering    opened    demonstrated    emission    silicon    fceo    serve    uhq    pursuing    techniques    circuits    oscillates    carrier    stabilize    chipscale    functionalized    compact    host    exploration    light    solid    route    lab    display    platform    lasing    materials    recipes    first    conductor    thin    realized    interference    resonators    actually    highest    gallery    fabricate    microresonators    conjunction    device    sin    ultra    strive    nitride    platforms    waveguide    kippenberg    uncover    dimensional    microtoroids   

Project "2DQOptics" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Organization address
address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015
website: www.epfl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 175˙419 €
 EC max contribution 175˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2019-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE CH (LAUSANNE) coordinator 175˙419.00

Map

 Project objective

The recently discovered two dimensional 2D materials have opened up new possibilities for exploration of fundamental physics as well as device applications. Such materials offer new opportunities for ultra compact optoelectronic devices. On the other hand, with the improvement in micro and nanofabrication techniques, it is now possible to fabricate ultra high Q microresonators (UHQ µresonators). A relevant example is the case of silica microtoroids, which due to the whispering gallery modes, display one of the highest Q factors ever reported. The basic aim of this proposal is to advance the fields of 2D materials and integrated UHQ µresonators alike by pursuing the integration of the two platforms. Specifically two aims are addressed. First coupling these atomically thin systems with silica and silicon nitride (SiN) UHQ µresonators platforms may help us uncover new quantum behaviour of emission from 2D materials in particular to validate unambiguous lasing via established recipes such as g^(2) measurements. Our work will elucidate if lasing is possible and strive to integrate such lasers with SiN integrated photonic circuits. Second integrate the 2D materials with the developed integrated photonic SiN circuits using the photonic damascene process as developed by the host group to realize an entirely novel concept: the use of 2D materials to stablize the carrier envelope frequency fceo of a frequency comb. This will be realized using a SiN broadening waveguide that is functionalized to contain a 2D atomically thin semi-conductor in conjunction with the recently demonstrated quantum interference effect. This effect enables to produce a photocurrent that oscillates at the fceo without the necessity to actually double the comb light. This integrated device would enable a solid state platform to measure fceo and eventually serve as a chipscale route to stabilize the frequency comb through feedback control. The project will be implemented at T. Kippenberg's lab at EPFL.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "2DQOPTICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "2DQOPTICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More