Opendata, web and dolomites


Acoustics for Next Generation Sequencing

Total Cost €


EC-Contrib. €






Project "ACOUSEQ" data sheet

The following table provides information about the project.


Organization address
postcode: G12 8QQ

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙995 €
 EC max contribution 149˙995 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-PoC
 Funding Scheme ERC-POC
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2018-10-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 149˙995.00


 Project objective

Since completion of the first human genome sequence, the demand for cheaper and faster sequencing methods has increased enormously. This need has driven the development of second-generation sequencing methods, or next-generation sequencing (also known as NGS or high throughput sequencing). The creation of these platforms has made sequencing accessible to more laboratories, rapidly increasing the volume of research, including clinical diagnostics and its use in directing treatment (precision medicine). The applications of NGS are also allowing rapid advances in clinically related fields such as public health and epidemiology. Such developments illustrate why sequencing is now the fastest-growing area in genomics (23% p.a.). The activity is said to be worth $2.5B this year, and poised to reach ~$9B by 2020. In any workflow, prior to the sequencing reactions, a number of pre-sequencing steps are required, including the fragmentation of the DNA into smaller sizes for processing, size selection, library preparation and target enrichment. This proposal is specifically concerned with this latter area, namely DNA fragmentation – now widely acknowledged across the industry as being the most important technological bottleneck in the pre-sequencing workflow. Our new method for DNA fragmentation – involving using surface acoustic waves will enable sample preparation from lower sample volumes using lower powers. It also has the potential to allow the seamless integration of fragmentation into sequencing instrumentation, opening up the possibility of “sample to answer” diagnostics. In the near term this will enable the implementation of sample preparation pre-sequencing steps within the NGS instruments. In the longer term, our techniques will also enable us to develop methods for field-based DNA sequencing – as may be required for determining “microbial resistance” and informing the treatment of infectious disease in the face of the emergence of drug resistance.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ACOUSEQ" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ACOUSEQ" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Mass Politics of Disintegration

Read More  


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

HOLI (2019)

Deep Learning for Holistic Inference

Read More