Opendata, web and dolomites

CoupledDB

High-Performance Indexing for Emerging GPU-Coupled Databases

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CoupledDB project word cloud

Explore the words cloud of the CoupledDB project. It provides you a very rough idea of what is the project "CoupledDB" about.

expertise    building    processed    confluence    hot    model    foundational    index    heterogeneous    exclusively    leverage    gpu    ubiquitous    becomes    cross    accessed    database    hardware    computational    energy    vehicle    positioning    algorithms    simulations    multicore    squander    small    architecture    compute    competitiveness    productivity    stage    disruptive    faster    ecosystem    lower    connected    techniques    computation    parallel    proliferation    handling    frequently    graphics    parallelism    footprint    neurons    industry    performance    cut    gpus    greener    scientific    cheaper    responsive    commonplace    objects    action    researcher    heterogeneity    preliminary    transfer    suggest    programming    data    powerful    accelerators    memory    types    indexing    principal    sweeping    forwardly    dichotomy    exploits    idle    indexes    valuable    straight    trajectories    incorporating    skills    vastly    setting    deescalating    feasible    forefront    structures    innovation    disk    mobile    fact    soon    host    coupled    units   

Project "CoupledDB" data sheet

The following table provides information about the project.

Coordinator
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU 

Organization address
address: HOGSKOLERINGEN 1
city: TRONDHEIM
postcode: 7491
website: www.ntnu.no

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Norway [NO]
 Project website https://www.ntnu.edu/idi/groups/dart
 Total cost 208˙400 €
 EC max contribution 208˙400 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2019-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU NO (TRONDHEIM) coordinator 208˙400.00

Map

 Project objective

'Index structures are foundational to the performance of database systems and large-scale simulations. Even small advances in indexing can therefore have widespread, sweeping impact on both industry competitiveness and scientific productivity. The confluence of several hardware trends is setting the stage for disruptive innovation in database indexing: deescalating costs of memory make it feasible to organise most of the 'hot', frequently accessed data in memory rather than on disk; and increasingly commonplace accelerators such as graphics processing units (GPUs) offer large-scale parallelism with a lower energy footprint. Thus, in-memory indexing that exploits GPUs could be much cheaper, faster, and greener.

However, effectively incorporating GPUs into computation is a principal research challenge. To idle the powerful multicore system in favour of exclusively using the GPU connected to it, as done currently, is to squander valuable resources. On the other hand, the GPU has a vastly different computational model, so cannot straight-forwardly leverage multicore techniques. The challenges in handling this dichotomy, in fact, will cross-cut many research areas as the heterogeneity in the compute ecosystem becomes ubiquitous in parallel processing.

Building on preliminary results that suggest common data structures processed by architecture-specific algorithms can support heterogeneity, this action will design indexes for the coupled multicore-GPU database systems that will soon be ubiquitous. The indexes will enable more responsive simulations of complex objects such as neurons and vehicle trajectories and support the recent proliferation of mobile-generated data. Moreover, through the action, the researcher will transfer technical parallel programming skills to the host, while the host will transfer expertise about new data types to the researcher. The project results will contribute to Europe's positioning at the forefront of heterogeneous parallel processing.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COUPLEDDB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COUPLEDDB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More