Opendata, web and dolomites

ELECTROQUANTUM-2D SIGNED

Atomistic Electrodynamics-Quantum Mechanical Framework for Characterizing, Manipulating and Optimizing Nonlinear Optical Processes in 2D Materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ELECTROQUANTUM-2D project word cloud

Explore the words cloud of the ELECTROQUANTUM-2D project. It provides you a very rough idea of what is the project "ELECTROQUANTUM-2D" about.

host    optical    training    impacts    graphene    enabled    modeling    microscopy    potentials    industrial    biosensing    linear    extraordinary    photonic    quantum    detection    periodic    computing    macroscopic    nonlocal    atomistic    first    metal    performance    students    prerequisite    optoelectronic    dimensional    sensing    codes    hpc    commercialization    monolayers    framework    model    edge    implements    cells    attainable    characterizing    industry    confinement    modulation    integrates    fast    phosphorene    material    solar    dichalcogenides    software    compare    interdisciplinary    faces    nop    nonlinear    simulating    theoretical    mechanical    exhibit    materials    finite    electrodynamics    computer    2d    amplification    switching    exchange    models    signal    size    media    truncation    efficient    incorporate    two    transition    uk    manipulating    tremendous    transferrable    optimizing    career    implementing    bulk    disciplines    seamlessly    science   

Project "ELECTROQUANTUM-2D" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-15   to  2020-03-13

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Two-dimensional (2D) materials, which include graphene, phosphorene, and transition metal dichalcogenides monolayers, exhibit extraordinary linear and nonlinear optical properties not attainable in bulk media. They find tremendous potentials in many photonic and optoelectronic applications, such as all-optical signal processing, optical amplification, nonlinear switching, optical microscopy, quantum detection, and sensing. The availability of first-principle, fast, efficient computer codes is a prerequisite to the bottom-up design of 2D materials. However, theoretical modeling of 2D materials faces great challenges as it needs to incorporate effects of finite size, edge truncation, periodic modulation, nonlocal, and quantum confinement. Here, we aim at developing atomistic electrodynamics-quantum mechanical theoretical models and implementing them in high-performance computing (HPC) software for characterizing, manipulating, and optimizing nonlinear optical processes (NOP) in 2D materials. The main objectives of this ambitious project are: (1) To develop a macroscopic electrodynamics approach for simulating NOP in 2D materials. (2) To develop an atomistic electrodynamics quantum mechanical framework for modeling NOP in 2D materials and compare the atomistic model to the macroscopic approach. (3) To develop user-friendly and reliable HPC software that seamlessly integrates and implements the theoretical models. (4) Using the software and theoretical models, emerging applications of 2D materials will be investigated, including solar cells, nonlinear microscopy, and biosensing. The project will have high impacts on: (1) advances in the science, technology, and industry of UK and Europe; (2) applicant’s future career development; (3) research, industrial, and transferrable knowledge exchange between the host and applicant; (4) design and commercialization of 2D material enabled devices; (5) training of students and researchers in several interdisciplinary disciplines.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ELECTROQUANTUM-2D" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ELECTROQUANTUM-2D" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COLEX (2019)

Coopetition and Legislation in the Spanish Netherlands (1598-1665)

Read More  

DiPipe (2019)

Direct remote C-H functionalization in piperidine derivatives

Read More  

RACOON (2019)

High-reliability Low-latency Communications with Network Coding

Read More