Opendata, web and dolomites


Spatiotemporal multimode complex optical systems

Total Cost €


EC-Contrib. €






Project "STEMS" data sheet

The following table provides information about the project.


There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country Italy [IT]
 Total cost 2˙084˙180 €
 EC max contribution 2˙084˙180 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-ADG
 Funding Scheme /ERC-ADG
 Starting year 2017
 Duration (year-month-day) from 2017-11-01   to  2022-10-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI BRESCIA IT (BRESCIA) hostInstitution 2˙084˙180.00


 Project objective

The STEMS project is about exploiting the new concept that has been recently introduced by the PI and his co-workers, namely the self-control of the spatial coherence of optical beams in multimode nonlinear optical fibers. This concept will enable a breakthrough technology, capable of delivering high-energy optical pulses with high-average powers and much higher beam quality from fiber lasers than what is possible today. High-power fiber lasers are largely limited by transverse mode instabilities, and the loss of spatial coherence in delivery fibers. Optical fibers provide the backbone of today’s internet communication networks, and enable compact, low cost light sources for a variety of industrial and biomedical applications. In most of these applications, single-mode fibers are used. Replacing single-mode fibers with multimode fibers leads to a dramatic growth of transmission capacity, and a substantial increase of average power and pulse energy from fiber lasers. However, because of spatial dispersion and resulting mode interference, multimode fibers suffer from an inherent randomization of the spatial transverse beam profile, leading to a loss of spatial coherence. My approach is to exploit the intensity dependent refractive index, or Kerr nonlinearity, of glass fibers to recover the spatial coherence of a multimode wave, and compensate for temporal modal dispersion. First, I propose to develop methods to control fiber nonlinearity, to compensate for temporal and spatial dispersion, thus preventing information spreading in the temporal domain, and coherence loss in the spatial domain. Second, by adding rare-earth dopants to multimode fibers, I will demonstrate self-control of modal dispersion and beam quality in active multimode fibers. Third, via the spatio-temporal control of beam propagation, I will introduce a new fast saturable absorber mechanism for the mode-locking of high-power fiber lasers, analogous to Kerr-lens mode-locking with bulk crystals.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STEMS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STEMS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

DLT (2018)

Deep Learning Theory: Geometric Analysis of Capacity, Optimization, and Generalization for Improving Learning in Deep Neural Networks

Read More  


Local Edaphic Adaptation in Plants through Leveraging an Extremophile Model

Read More  

HyArchi (2018)

Targeting Root Hydraulic Architecture to improve Crops under Drought

Read More