Opendata, web and dolomites

ProMeta SIGNED

Non-histone protein acetylation targets of KAT2A in AML

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ProMeta project word cloud

Explore the words cloud of the ProMeta project. It provides you a very rough idea of what is the project "ProMeta" about.

blasts    maintained    hat    reprogramming    supportive    ing    transferase    peroxisome    implicated    found    expansion    bone    deranged    administration    function    attributable    investigation    modifiers    cancer    maturation    30    received    proliferator    fate    oncogenic    transplantation    flt3    explore    free    receptor    hijacked    residues    myeloid    unchanged    prognosis    decades    marrow    yeast    post    itd    interests    complexes    themes    leukaemia    considering    diseases    alpha    extends    mutation    stages    biology    mutated    care    dismal    modifications    dysregulation    cell    coactivator    epigenetic    pivotal       small    acetylates    clonal    break    fusion    acute    driving    histone    rare    chains    acetylation    mainstay    heterogeneous    identity    aml    catalyse    signalling    paves    accompanying    translational    pkc412    disease    regulates    protein    acetyltransferase    fda    survival    first    transcriptional    gamma    developmental    drug    pathogenesis    gcn5    evi1    kat2a    patients    aml1    acetyl    activated    essentially    designation    remained    proteins    mds1    food    therapy    crucially   

Project "ProMeta" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-01   to  2020-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

The importance of an insight into how cell fate is established and maintained, extends far beyond the interests of developmental biology. It is pivotal to our understanding of how these processes can be hijacked and deranged in diseases such as cancer, or of the factors involved in reprogramming cell identity and function. Acute Myeloid Leukaemia (AML) has a dismal prognosis with less than 30% 5-year survival. Mainstay therapy has remained essentially unchanged for the past three decades, with all small advances in disease-free survival attributable to transplantation and improved supportive care. Only recently PKC412 has received Food and Drug Administration (FDA)’s break through therapy designation for the FLT3-ITD AML. This paves the way for investigation considering that FLT3-ITD as a driving oncogenic mutation has been found in ~30% of the AML patients. The pathogenesis of AML is heterogeneous, but there are common themes of epigenetic, transcriptional and signalling dysregulation that contribute to the resulting clonal expansion of blasts at different stages of maturation, and accompanying bone marrow failure. A significant number of the most commonly mutated targets in AML are histone modifiers, i.e. proteins or complexes that catalyse post-translational modifications in specific residues of the histone side chains. A less studied acetyltransferase, but crucially implicated in AML is KAT2A, the first histone acetyl-transferase (HAT) identified in yeast.GCN5 also acetylates the AML1/MDS1/EVI1 fusion protein in rare cases of AML.KAT2A regulates the activity of Peroxisome Proliferator- Activated Receptor Gamma-Coactivator-1α and B through protein acetylation. The goal of this proposal is to explore the role of KAT2A in Acute Myeloid Leukaemia (AML) through investigation of its non-histone protein acetylation activity.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROMETA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROMETA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

CP-FTmmW Aminogen (2020)

Chemistry and structure of aminogen radicals using chirped-pulse Fourier transform (sub)millimeter rotational spectroscopy

Read More