Opendata, web and dolomites

REACT SIGNED

Realizable Advanced Cryptography

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "REACT" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙493˙803 €
 EC max contribution 1˙493˙803 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2022-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙306˙303.00
2    TEL AVIV UNIVERSITY IL (TEL AVIV) participant 187˙500.00

Map

 Project objective

In a free society, there is persistent tension between utility and privacy. Citizens have the basic right to keep their personal information private. However, sometimes keeping our data private could significantly reduce our ability to use this data to benefit ourselves or society. This tension is multiplied many times over in our modern data driven society, where data is utilized using remote algorithms.

State of the art research suggests that new advanced cryptographic primitives can mitigate this tension. These include computing on encrypted data via fully homomorphic encryption, fine grained access control to encrypted data via attribute based encryption, and most recently general purpose program obfuscation, which on paper can solve many of cryptography's long standing problems. However, these primitives are largely either too complicated or not sufficiently founded to be considered for real world applications.

Project REACT will apply foundational theoretical study towards removing the barriers between advanced cryptographic primitives and reality. My viewpoint, supported by my prior research success, is that orders-of-magnitude improvement in efficiency and security requires foundational theoretical study, rather than focusing on optimizations or heuristics. My projection is that progress in this direction will both allow for future realistic implementation of these primitives, reducing said tension, as well as contribute to basic cryptographic study by opening new avenues for future research.

To achieve this goal, I will pursue the following objectives: (i) Studying the computational complexity of underlying hardness assumptions, specifically lattice based, to better understand the level of security we can expect of proposed primitives. (ii) Simplifying and extending the LWE/trapdoor paradigm that underlies many of the new primitives, and that I find incomplete. (iii) Constructing cryptographic graded encoding schemes and obfuscators.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ARCTIC (2020)

Air Transport as Information and Computation

Read More  

Growth regulation (2019)

The wide-spread bacterial toxin delivery systems and their role in multicellularity

Read More  

inhibiTOR (2020)

Novel selective mTORC1 inhibitors

Read More