Opendata, web and dolomites

THIRST SIGNED

Third Strategy in Tissue Engineering – Functional microfabricated multicellular spheroid carriers for tissue engineering and regeneration

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 THIRST project word cloud

Explore the words cloud of the THIRST project. It provides you a very rough idea of what is the project "THIRST" about.

modules    biofunctionalisation    realization    focussed    holds    became    radically    restricted    disease    basic    strategy    demonstrating    self    noble    enabled    expanded    representing    represented    therapies    interdisciplinary    area    extremely    printed    hurdles    seem    tissue    tissues    avascular    clinical    te    cutting    multicellular    examples    few    strategies    relies    fact    context    expectations    breakthrough    fairly    establishing    overcoming    vascularized    mostly    inspiring    automated    sight    types    translation    unconventional    despite    microscaffolds    desperately    protocols    applicability    technological    encaged    variety    microscaffold    latter    thirst    bone    bottlenecks    pursues    fundamental    substantial    successful    universal    cartilage    possibilities    adjustments    solution    nature    urgent    edge    combination    launch    considerable    procedure    community    conventional    repair    spheroids    assembly    engineering    3d    tool    box    scientific    regulatory    organ   

Project "THIRST" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAET WIEN 

Organization address
address: KARLSPLATZ 13
city: WIEN
postcode: 1040
website: www.tuwien.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 1˙999˙962 €
 EC max contribution 1˙999˙962 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2023-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET WIEN AT (WIEN) coordinator 1˙746˙837.00
2    LUDWIG BOLTZMANN GESELLSCHAFT OSTERREICHISCHE VEREINIGUNG ZUR FORDERUNG DER WISSENSCHAFTLICHEN FORSCHUNG AT (WIEN) participant 253˙125.00

Map

 Project objective

The field of tissue engineering (TE) pursues a noble goal, driven by the urgent need for tissue and organ repair. It is represented by a fairly large and extremely interdisciplinary scientific community. However, so far TE was not able to deliver to the expectations, with only a few examples of successful clinical translation mostly restricted to a particular disease or tissue type. Despite the fact that all major fundamental bottlenecks of conventional TE strategies have long been identified, a universal solution does not seem to be in sight. In this project I propose to launch a radically new approach, a third strategy in tissue engineering (THIRST), which holds the potential to produce a desperately needed technological breakthrough. THIRST relies on a tissue self-assembly from multicellular spheroids encaged within robust 3D printed microscaffolds. THIRST is enabled by a number of cutting-edge methods, some of which became relevant in the context of TE only recently. In combination, these methods offer a variety of new technological possibilities for the area of TE. The objectives of this project are focussed on establishing the means for automated large-scale production of tissue modules, protocols for microscaffold biofunctionalisation, and demonstrating THIRST potential with highly relevant clinical examples - cartilage, representing avascular tissue, and vascularized bone tissue. A distinct feature of THIRST is its universal applicability, meaning that such a tool-box can be further expanded to encompass other types of tissues without substantial adjustments to the basic tissue assembly procedure. The latter is particularly inspiring, taking into account the considerable regulatory hurdles associated with the development of new TE therapies. Due to its unconventional nature, realization of THIRST relies on overcoming several considerable technological challenges addressed by this project.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THIRST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THIRST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

QLite (2019)

Quantum Light Enterprise

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

OAlipotherapy (2018)

Long-retention liposomic drug-delivery for intra-articular osteoarthritis therapy

Read More