Opendata, web and dolomites

THIRST SIGNED

Third Strategy in Tissue Engineering – Functional microfabricated multicellular spheroid carriers for tissue engineering and regeneration

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 THIRST project word cloud

Explore the words cloud of the THIRST project. It provides you a very rough idea of what is the project "THIRST" about.

successful    clinical    printed    demonstrating    overcoming    desperately    hurdles    sight    expanded    tissues    pursues    fact    strategies    cartilage    nature    fairly    became    adjustments    strategy    avascular    considerable    conventional    enabled    holds    context    universal    fundamental    few    repair    variety    microscaffold    launch    basic    types    thirst    scientific    despite    protocols    vascularized    focussed    establishing    extremely    area    cutting    noble    assembly    te    translation    tool    realization    seem    mostly    represented    relies    unconventional    spheroids    inspiring    interdisciplinary    edge    self    engineering    automated    modules    applicability    microscaffolds    technological    solution    tissue    restricted    multicellular    radically    bottlenecks    encaged    possibilities    therapies    examples    urgent    organ    bone    biofunctionalisation    substantial    disease    latter    3d    combination    regulatory    procedure    box    expectations    representing    breakthrough    community   

Project "THIRST" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAET WIEN 

Organization address
address: KARLSPLATZ 13
city: WIEN
postcode: 1040
website: www.tuwien.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 1˙999˙962 €
 EC max contribution 1˙999˙962 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2023-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET WIEN AT (WIEN) coordinator 1˙746˙837.00
2    LUDWIG BOLTZMANN GESELLSCHAFT OSTERREICHISCHE VEREINIGUNG ZUR FORDERUNG DER WISSENSCHAFTLICHEN FORSCHUNG AT (WIEN) participant 253˙125.00

Map

 Project objective

The field of tissue engineering (TE) pursues a noble goal, driven by the urgent need for tissue and organ repair. It is represented by a fairly large and extremely interdisciplinary scientific community. However, so far TE was not able to deliver to the expectations, with only a few examples of successful clinical translation mostly restricted to a particular disease or tissue type. Despite the fact that all major fundamental bottlenecks of conventional TE strategies have long been identified, a universal solution does not seem to be in sight. In this project I propose to launch a radically new approach, a third strategy in tissue engineering (THIRST), which holds the potential to produce a desperately needed technological breakthrough. THIRST relies on a tissue self-assembly from multicellular spheroids encaged within robust 3D printed microscaffolds. THIRST is enabled by a number of cutting-edge methods, some of which became relevant in the context of TE only recently. In combination, these methods offer a variety of new technological possibilities for the area of TE. The objectives of this project are focussed on establishing the means for automated large-scale production of tissue modules, protocols for microscaffold biofunctionalisation, and demonstrating THIRST potential with highly relevant clinical examples - cartilage, representing avascular tissue, and vascularized bone tissue. A distinct feature of THIRST is its universal applicability, meaning that such a tool-box can be further expanded to encompass other types of tissues without substantial adjustments to the basic tissue assembly procedure. The latter is particularly inspiring, taking into account the considerable regulatory hurdles associated with the development of new TE therapies. Due to its unconventional nature, realization of THIRST relies on overcoming several considerable technological challenges addressed by this project.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THIRST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THIRST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More