Opendata, web and dolomites

CylcoRu4PACT TERMINATED

Cyclometallated ruthenium complexes for photo-activated chemotherapy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CylcoRu4PACT project word cloud

Explore the words cloud of the CylcoRu4PACT project. It provides you a very rough idea of what is the project "CylcoRu4PACT" about.

lines    window    released    visible    concentrations    chemotherapy    alternative    fails    oxygen    occurring    vitro    tumour    irradiation    biological    wavelength    efficient    hindering    toxicity    sensitive    wavelengths    cell    cytotoxicity    introduce    treatments    compounds    minimizing    place    photochemotherapeutic    determined    anticancer    locally    too    photochemical    light    human    phototherapy    penetrates    treatment    hard    shift    optimally    photodynamic    dark    usually    photoreactivity    measured    carbon    excited    polypyridyl    consist    curing    compound    maximizing    metal    efficacy    cyclometallated    prodrugs    absorption    tissues    hypoxic    clinic    modifies    ligand    reactions    complexes    patient    photosubstitution    ruthenium    synthesized    cyclometallation    stand    grounds    sterically    synthesize    chemotherapeutic    quenches    overcome    cancer    red    concentration    therapy    model    energy    keeping    bond    containing    limit    tumours    groups    recover   

Project "CylcoRu4PACT" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT LEIDEN 

Organization address
address: RAPENBURG 70
city: LEIDEN
postcode: 2311 EZ
website: www.universiteitleiden.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website https://www.universiteitleiden.nl/en/staffmembers/sylvestre-bonnet
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT LEIDEN NL (LEIDEN) coordinator 165˙598.00

Map

 Project objective

Chemotherapy is efficient in curing cancer, but most treatments are very hard to stand for the patient, and side effects limit treatment efficacy. Phototherapy is a promising alternative, where the toxicity of a light-sensitive chemotherapeutic compound is locally released upon visible light irradiation of the compound-containing tumour. Photodynamic therapy is already available in the clinic for oxygen-rich tumours; however, it fails when the oxygen concentration at the place of irradiation is too low. In this project I propose to synthesize new ruthenium-based photochemotherapeutic compounds containing cyclometallated ligand, and to test them in an in vitro model of hypoxic cancer. The presence of a carbon-metal bond is known to shift the light absorption properties of ruthenium polypyridyl complexes towards the photodynamic window, a wavelength range where light penetrates optimally into biological tissues. However, cyclometallation usually quenches the ligand photosubstitution properties of ruthenium compounds because it strongly modifies the energy of their excited states. In this project, I will introduce sterically hindering groups on the cyclometallated ligand to recover photoreactivity of the complexes while keeping light absorption at high wavelengths. The challenges of this project consist on the one hand in achieving efficient ligand photosubstitution reactions with cyclometallated ruthenium compounds, and on the other hand in minimizing the cytotoxicity in the dark while maximizing cytotoxicity after red light irradiation at low oxygen concentrations. The ruthenium prodrugs will be synthesized, their photochemical properties will be measured, and their cytotoxicity against human cancer cell lines will be determined in an in vitro model of hypoxic cancer. This project will set new grounds in the treatment of hypoxic tumours and propose a new way to overcome side effects occurring in traditional anticancer chemotherapy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CYLCORU4PACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CYLCORU4PACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More