Opendata, web and dolomites


Methods for Managing Audiovisual Data: Combining Automatic Efficiency with Human Accuracy

Total Cost €


EC-Contrib. €






Project "MeMAD" data sheet

The following table provides information about the project.


Organization address
address: OTAKAARI 1
city: ESPOO
postcode: 02150

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Finland [FI]
 Total cost 3˙431˙593 €
 EC max contribution 3˙431˙593 € (100%)
 Programme 1. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
 Code Call H2020-ICT-2017-1
 Funding Scheme /RIA
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2020-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AALTO KORKEAKOULUSAATIO SR FI (ESPOO) coordinator 752˙207.00
2    LIMECRAFT NV BE (GENT) participant 633˙080.00
3    EURECOM FR (BIOT) participant 401˙598.00
5    UNIVERSITY OF SURREY UK (GUILDFORD) participant 370˙680.00
6    YLEISRADIO OY FI (HELSINKI) participant 354˙850.00
7    LINGSOFT OY FI (HELSINKI) participant 309˙250.00


 Project objective

Audiovisual media content created and used in films and videos is key for people to communicate and entertain. It has also become an essential resource of modern history, since a large portion of memories and records of the 20th and 21st centuries are audiovisual. To fully benefit from this asset, fast and effective methods are needed to cope with the rapidly growing audiovisual big data that are collected in digital repositories and used internationally. MeMAD will provide novel methods for an efficient re-use and re-purpose of multilingual audiovisual content which revolutionize video management and digital storytelling in broadcasting and media production. We go far beyond the state-of-the-art automatic video description methods by making the machine learn from the human. The resulting description is thus not only a time-aligned semantic extraction of objects but makes use of the audio and recognizes action sequences. While current methods work mainly for English, MeMAD will handle multilingual source material and produce multilingual descriptions and thus enhance the user experience. Our method interactively integrates the latest research achievements in deep neural network techniques in computer vision with knowledge bases, human and machine translation in a continuously improving machine learning framework. This results in detailed, rich descriptions of the moving images, speech, and audio, which enable people working in the Creative Industries to access and use audiovisual information in more effective ways. Moreover,the intermodal translation from images and sounds into words will attract millions of new users to audiovisual media, including the visually and hearing impaired. Anyone using audiovisual content will also benefit from these verbalisations as they are non-invasive surrogates for visual and auditory information, which can be processed without the need of actually watching or listening, matching the new usage of video consumption on mobile devices.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MEMAD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MEMAD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.1.)

ReCAP (2016)

Real-time Content Analysis and Processing (ReCAP) for Agile Media Production

Read More  

IRSUS (2017)

Innovation Radar Support Services

Read More  


Supporting the scale and growth of Digital Social Innovation in Europe through coordination of Europe’s DSI and CAPS Networks

Read More