Opendata, web and dolomites


Filter Integrated single-Photon Sources

Total Cost €


EC-Contrib. €






Project "FIPS" data sheet

The following table provides information about the project.


Organization address
address: NORREGADE 10
postcode: 1165

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-PoC
 Funding Scheme ERC-POC
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2019-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 150˙000.00


 Project objective

The FIPS proof-of-concept project aims at building a prototype of an ultra-small optical filter which can be integrated into a semiconductor chip. Spectral filtering is very important for both classical and quantum photonic technology. It has applications in many fields of engineering and science such as telecommunications and spectroscopy. Conventional methods to filter light, such as prisms and gratings, require a very large dispersion length (centimeters to meters) to achieve high wavelength resolution. Therefore, reducing the size of spectrometers to enable applications in the wearable and disposable market, requires a different technological approach to light filtering.

The filter that we will develop within FIPS is based on sub-wavelength nano-cavities which provide sub-nm wavelength resolutions in the near infrared and can be integrated in compact photonic circuits. Additionally, we will integrate our filters with micro-electro-mechanical systems (MEMS) to actively tune our filters over a broad wavelength range. This approach provides a novel solution that could be further combined with detectors for spectroscopy applications.

The goal of the project is to fabricate an integrated filter in gallium arsenide membranes using state-of-the-art nanofabrication techniques and characterize it in our optical labs by performing spectral analysis of an input signal. Moreover, together with industry collaborators, we will explore the potential commercial applications of our technology towards new products that could compete in performance and specification with most of the existing integrated optical filters, in particular in the field of optical interrogation.


year authors and title journal last update
List of publications.
2019 Xiaoyan Zhou, Ravitej Uppu, Zhe Liu, Camille Papon, Rudiger Schott, Andreas D. Wieck, Arne Ludwig, Peter Lodahl, Leonardo Midolo
On-chip nanomechanical filtering of quantum-dot single-photon sources
published pages: , ISSN: , DOI:

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FIPS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FIPS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More