Opendata, web and dolomites

GOKNOT TERMINATED

Modelling the formation of a gordian knot in Human Ubiquitin Hydrolase

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GOKNOT project word cloud

Explore the words cloud of the GOKNOT project. It provides you a very rough idea of what is the project "GOKNOT" about.

biophysical    strategy    limitations    variationally    knotted    collaborations    terminal    limited    intermediate    building    enhanced    grained    protein    free    form    mechanisms    host    crossings    computational    hydrolase    molecular    full    combines    connected    dynamics    representation    contributed    center    region    polymers    sampling    advancements    methodological    comprehension    trefoil    time    folding    diseases    course    incomplete    effect    coarse    soft    description    gordian    preferential    output    atom    modeling    complemented    landscape    models    mostly    bio    computer    employ    picture    simplest    backbone    outline    forms    explicit    nontrivial    parkinson    theoretical    introducing    solvent    training    alzheimer    generalize    metadynamics    energy    expertise    action    lifted    validation    relies    calculations    biomedical    experiments    polypeptide    proteins    topology    human    ubiquitin    knot    devising    simulations    model   

Project "GOKNOT" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website http://www2.mpip-mainz.mpg.de/
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 159˙460.00

Map

 Project objective

The folding of knotted proteins is a challenging research topic of great biophysical interest. In this field, computer simulations have greatly contributed to advance our comprehension of the mechanisms that allow a polypeptide to form a knot during the folding. However, due to limitations in methods and resources, the state-of-the-art picture on the process is still incomplete, and mostly limited to the simplest nontrivial topology, the trefoil knot. In this Action I will investigate the folding of human Ubiquitin C-terminal Hydrolase, whose backbone forms a Gordian knot with five crossings. I will make use of a multi-scale Molecular Dynamics strategy that combines coarse grained and all-atom models with enhanced sampling. Using a coarse grained model I will outline a general picture of the folding, devising the preferential pathways and intermediate states. Then, building on this knowledge, I will employ a full-atom representation of the system, targeting the calculations in the most relevant region of the protein's free energy landscape. The effect of an explicit solvent description will be considered as well. The computational time limitations will be lifted by enhancing the sampling through the use of Metadynamics and Variationally Enhanced Sampling. The Action relies on my experience in enhanced sampling methods, that will be complemented by the training and expertise provided by the host institution, a leading center in coarse-grained modeling of bio-polymers and soft matter. In the course of the action I will establish two key collaborations, providing further expertise for the success of my simulations, and allowing the validation of my theoretical model with experiments. The output of the project will generalize the current picture on knotted protein folding, introducing important methodological advancements, and contributing to the knowledge on a system of great biomedical interest, connected to diseases such as Parkinson's and Alzheimer's.

 Publications

year authors and title journal last update
List of publications.
2018 Claudio Perego and Raffaello Potestio
Searching the optimal folding routes of a Complex Lasso protein
published pages: , ISSN: , DOI: 10.1101/507079
2019-05-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GOKNOT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GOKNOT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More