Opendata, web and dolomites

PHOTOCAMSYN SIGNED

Photocatalytic Reductive Coupling of Imines: A New Platform for Chiral Amine Synthesis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PHOTOCAMSYN project word cloud

Explore the words cloud of the PHOTOCAMSYN project. It provides you a very rough idea of what is the project "PHOTOCAMSYN" about.

carbon    derivatives    reverse    date    suites    rendering    chiral    amine    asymmetric    nucleophiles    amines    electrophilic    reductive    hydrogen    branched    industrial    bond    precursors    species    substrates    synthesis    commonplace    broadly    pi    limited    generate    pharmaceuticals    intermediates    synthetically       stabilise    polarity    reactivity    broad    powerful    accessed    reagents    imine    takes    synthetic    alpha    possibility    electron    accordingly    plan    untapped    modes    natural    academic    direct    amino    radical    offers    undergoing    turn    dominate    strategy    imines    agrochemicals    react    whilst    nucleophilic    alkynes    careful    applicable    generation    led    wealth    advantage    free    versions    chemistry    motifs    catalytic    photochemical    biologically    umpolung    perspectives    atom    reversal    anionic    alkenes    deprotonation    formal    forming    centered    organometallic    functionalisation    reactions   

Project "PHOTOCAMSYN" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-21   to  2020-06-20

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00

Map

 Project objective

Chiral α-branched amines and their derivatives are commonplace in pharmaceuticals, agrochemicals and biologically relevant natural products. Accordingly, the development of new synthetically powerful methods for their synthesis, and/or further functionalisation, through new carbon-carbon bond forming processes is both important and timely from academic and industrial perspectives. Such chiral α-branched amine motifs can be accessed from electrophilic imine substrates, through direct addition of carbon-centered nucleophiles such as organometallic reagents and electron rich π-nucleophiles. This traditional approach takes advantage of the easy formation of imines and their natural polarity and has led to numerous developments over the years. Whilst nucleophilic addition reactions dominate the chemistry of imines, polarity reversal is possible but requires the careful design of imine precursors able to stabilise anionic intermediates following deprotonation. Free radical chemistry offers the possibility to reverse the polarity of imine derivatives; the formal addition of a hydrogen atom to the C=N π-bond can generate a nucleophilic α-amino radical able to react with alkenes and alkynes. However, to date these approaches have been limited by the way the radical is generated. Here we propose a new and broadly applicable ‘umpolung’ approach to access chiral α-branched amine motifs directly from imine substrates. Our plan is to design and develop a new reductive photochemical system that will allow the direct generation of ‘free’ nucleophilic α-amino radical species capable of undergoing a broad range of synthetically useful carbon-carbon bond forming processes. This non-classical umpolung strategy has a wealth of untapped synthetic potential and will allow the development of new modes of reactivity each in turn rendering new suites of synthetic methodologies including catalytic asymmetric versions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PHOTOCAMSYN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PHOTOCAMSYN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More  

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More