Opendata, web and dolomites

PHOTOCAMSYN SIGNED

Photocatalytic Reductive Coupling of Imines: A New Platform for Chiral Amine Synthesis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PHOTOCAMSYN project word cloud

Explore the words cloud of the PHOTOCAMSYN project. It provides you a very rough idea of what is the project "PHOTOCAMSYN" about.

direct    carbon    commonplace    catalytic    date    takes    umpolung    asymmetric    amino    versions       precursors    branched    chemistry    industrial    synthetic    rendering    polarity    academic    offers    natural    careful    advantage    reversal    nucleophilic    nucleophiles    generation    undergoing    organometallic    alkenes    wealth    species    centered    substrates    bond    motifs    agrochemicals    perspectives    formal    led    synthesis    electron    pharmaceuticals    pi    reagents    synthetically    powerful    react    derivatives    alkynes    strategy    functionalisation    hydrogen    amine    electrophilic    anionic    atom    suites    reductive    intermediates    dominate    reverse    reactivity    modes    alpha    stabilise    biologically    accordingly    reactions    accessed    broadly    plan    chiral    amines    photochemical    imines    imine    broad    whilst    free    deprotonation    turn    forming    radical    generate    applicable    limited    untapped    possibility   

Project "PHOTOCAMSYN" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-21   to  2020-06-20

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00

Map

 Project objective

Chiral α-branched amines and their derivatives are commonplace in pharmaceuticals, agrochemicals and biologically relevant natural products. Accordingly, the development of new synthetically powerful methods for their synthesis, and/or further functionalisation, through new carbon-carbon bond forming processes is both important and timely from academic and industrial perspectives. Such chiral α-branched amine motifs can be accessed from electrophilic imine substrates, through direct addition of carbon-centered nucleophiles such as organometallic reagents and electron rich π-nucleophiles. This traditional approach takes advantage of the easy formation of imines and their natural polarity and has led to numerous developments over the years. Whilst nucleophilic addition reactions dominate the chemistry of imines, polarity reversal is possible but requires the careful design of imine precursors able to stabilise anionic intermediates following deprotonation. Free radical chemistry offers the possibility to reverse the polarity of imine derivatives; the formal addition of a hydrogen atom to the C=N π-bond can generate a nucleophilic α-amino radical able to react with alkenes and alkynes. However, to date these approaches have been limited by the way the radical is generated. Here we propose a new and broadly applicable ‘umpolung’ approach to access chiral α-branched amine motifs directly from imine substrates. Our plan is to design and develop a new reductive photochemical system that will allow the direct generation of ‘free’ nucleophilic α-amino radical species capable of undergoing a broad range of synthetically useful carbon-carbon bond forming processes. This non-classical umpolung strategy has a wealth of untapped synthetic potential and will allow the development of new modes of reactivity each in turn rendering new suites of synthetic methodologies including catalytic asymmetric versions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PHOTOCAMSYN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PHOTOCAMSYN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENI (2019)

Gender, emotions and national identities: a new perspective on the abortion debates in Italy (1971-1981).

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

RealFlex (2019)

Real-time simulator-driver design and manufacturing based on flexible systems

Read More