Opendata, web and dolomites

NPsVLCD SIGNED

Natural Product-Inspired Therapies for Leishmaniasis and Chagas Disease

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NPsVLCD project word cloud

Explore the words cloud of the NPsVLCD project. It provides you a very rough idea of what is the project "NPsVLCD" about.

collaborations    compound    few    thereby    drugs    multidisciplinary    chemistry    families    mode    compliance    modification    action    prominent    compounds    urgently    severe    12    ignored    dependent    parasitologist    worldwide    largely    identification    concise    frontline    evaluation    trials    artemisinin    clinical    leishmaniases    amphotericin    track    read    alkaloid    resistance    chagas    structurally    therapeutic    antiparasitic    parasite    malaria    strategies    progress    record    feedback    tempone    convergent    examples    pharmacophore    additionally    expert    synthetic    kevin    dynamic    visceral    leads    cd    investment    central    contrast    bioactivity    natural    synthesis    efficiency    people    pharmacophores    parasitic    patient    made    progressed    dogma    series    potentially    affe    treatments    disease    prof    despite    candidates    modes    critically    vl    andre    refinement    time    overarching    million    limited    preclinical    leishmaniasis    modular       exploration    limitations    couple    informing    pharmacokinetic    pharmacologist    accessibility    therapies    suffer   

Project "NPsVLCD" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2021-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 212˙933.00

Map

 Project objective

The development of new therapies for leishmaniases (which affeThe development of new therapies for visceral leishmaniasis (affects ~12 million people worldwide) and Chagas disease (~6-7 million people worldwide) is critically dependent on the identification of novel pharmacophores with new modes of action. Current treatments suffer from severe side effects, high cost, patient compliance issues, and emerging resistance; as such, new therapeutic leads are urgently required. Despite significant investment, limited progress has been made with research into new 'synthetic' drugs: no candidates are in clinical trials (although two compounds have recently progressed to preclinical evaluation for VL). In contrast, research into natural product-derived drugs has been largely ignored, despite their track record as frontline treatments for VL (amphotericin B) and the most prominent parasitic disease, malaria (artemisinin). In this project, we challenge this dogma through the exploration of a series of structurally-related alkaloid natural product families, where highly promising antiparasitic bioactivity has been observed in the few examples studied. The selection of these families is additionally based on their accessibility through concise, modular and convergent synthetic strategies, which facilitate modification. We couple this central focus of synthetic chemistry with collaborations to evaluate bioactivity (with expert parasitologist Prof Andre Tempone), and identify pharmacokinetic/dynamic limitations (with expert pharmacologist Prof Kevin Read), thereby informing analogue refinement and synthesis. This multidisciplinary approach will greatly enhance the impact of the synthetic chemistry work by providing 'real-time' feedback into compound design, enhancing project efficiency and progress. Our overarching, long term impact objective is to identify a new pharmacophore (and potentially new parasite target / mode of action) for the potential development of VL/CD therapies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NPSVLCD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NPSVLCD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More