Opendata, web and dolomites

NPsVLCD SIGNED

Natural Product-Inspired Therapies for Leishmaniasis and Chagas Disease

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NPsVLCD project word cloud

Explore the words cloud of the NPsVLCD project. It provides you a very rough idea of what is the project "NPsVLCD" about.

structurally    disease    severe    million    cd    time    resistance    accessibility    action    compound    urgently    antiparasitic    contrast    prof    couple    kevin    expert    thereby    concise    amphotericin    therapeutic    convergent    strategies    pharmacophore    candidates    leishmaniasis    preclinical    modes    investment    frontline    alkaloid    tempone    refinement    vl    dogma       parasite    mode    synthetic    efficiency    compounds    overarching    modification    chemistry    pharmacophores    identification    suffer    therapies    feedback    natural    progressed    track    pharmacokinetic    dynamic    central    leishmaniases    prominent    informing    worldwide    dependent    synthesis    12    exploration    largely    potentially    treatments    progress    modular    series    visceral    artemisinin    patient    collaborations    chagas    clinical    compliance    few    evaluation    andre    pharmacologist    limited    parasitologist    malaria    despite    critically    additionally    multidisciplinary    bioactivity    ignored    leads    affe    families    parasitic    record    drugs    made    limitations    trials    read    examples    people   

Project "NPsVLCD" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2021-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 212˙933.00

Map

 Project objective

The development of new therapies for leishmaniases (which affeThe development of new therapies for visceral leishmaniasis (affects ~12 million people worldwide) and Chagas disease (~6-7 million people worldwide) is critically dependent on the identification of novel pharmacophores with new modes of action. Current treatments suffer from severe side effects, high cost, patient compliance issues, and emerging resistance; as such, new therapeutic leads are urgently required. Despite significant investment, limited progress has been made with research into new 'synthetic' drugs: no candidates are in clinical trials (although two compounds have recently progressed to preclinical evaluation for VL). In contrast, research into natural product-derived drugs has been largely ignored, despite their track record as frontline treatments for VL (amphotericin B) and the most prominent parasitic disease, malaria (artemisinin). In this project, we challenge this dogma through the exploration of a series of structurally-related alkaloid natural product families, where highly promising antiparasitic bioactivity has been observed in the few examples studied. The selection of these families is additionally based on their accessibility through concise, modular and convergent synthetic strategies, which facilitate modification. We couple this central focus of synthetic chemistry with collaborations to evaluate bioactivity (with expert parasitologist Prof Andre Tempone), and identify pharmacokinetic/dynamic limitations (with expert pharmacologist Prof Kevin Read), thereby informing analogue refinement and synthesis. This multidisciplinary approach will greatly enhance the impact of the synthetic chemistry work by providing 'real-time' feedback into compound design, enhancing project efficiency and progress. Our overarching, long term impact objective is to identify a new pharmacophore (and potentially new parasite target / mode of action) for the potential development of VL/CD therapies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NPSVLCD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NPSVLCD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

UNMACRODYN (2019)

Uncertainty shocks, inflation dynamics and monetary policy

Read More  

CHES (2020)

Resilience of Coastal Human-Environment Systems

Read More