Opendata, web and dolomites

BioVOLHum SIGNED

An understated player of Climate Change - increased air humidity - impact on volatile signaling compound emission at northern forests

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BioVOLHum project word cloud

Explore the words cloud of the BioVOLHum project. It provides you a very rough idea of what is the project "BioVOLHum" about.

vary    combine    climate    assimilation    ah    limited    vapor    physiological    feedback    temperate    influence    mechanisms    air    considerably    allocation    hypothesizes    plants    substantially    manipulation    agent    emissions    content    emission    global    link    data    competence    period    tree    source    elaborate    ant    perspectives    greenhousegas    models    compounds    irradiation    revealed    hydraulics    forests    environmental    clarify    diffuse    lue    simulations    natural    variation    latitudes    nutrient    transpiration    trees    water    synthesis    shoot    differences    outcome    humidified    sink    elevated    light    bvcs    free    chemistry    irradiance    biogenic    appears    northern    leaf    magnify    photosynthesis    bvc    spring    measured    experiment    incl    predict    foliage    temperature    broad    constraints    nitrogen    pigments    efficiency    volatile    seasonality    pigment    carbon    forest    professional    plant    atmospheric    predicted    consequently    supply    humidity    turn   

Project "BioVOLHum" data sheet

The following table provides information about the project.

Coordinator
HELSINGIN YLIOPISTO 

Organization address
address: YLIOPISTONKATU 3
city: HELSINGIN YLIOPISTO
postcode: 14
website: www.helsinki.fi

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Finland [FI]
 Total cost 191˙325 €
 EC max contribution 191˙325 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2020-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HELSINGIN YLIOPISTO FI (HELSINGIN YLIOPISTO) coordinator 191˙325.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Global climate simulations predict increased atmospheric humidity (AH) for northern latitudes. Water vapor, as an effective greenhousegas, can magnify the rise in temperature even more. There is large uncertainty of the impact of elevated AH on the production of biogenic volatile compounds (BVCs) by plants, which in turn, might contribute considerably to changes in atmospheric chemistry. The aim of this project is to clarify the impact of increased AH and diffuse irradiation to carbon assimilation, allocation and consequently BVC emissions from northern forests. This study will combine a unique free-air manipulation experiment of increased AH in a temperate forest with analysis of long-term data of plant responses to natural variation in AH. A broad selection of environmental and plant parameters (incl. BVCs, growth, photosynthesis, leaf pigment and nitrogen content, tree hydraulics) will be measured during the period of shoot development in spring, to clarify the impact of seasonality and physiological constraints on the emission of BVCs. Increased AH appears to influence photosynthesis, transpiration and foliage nutrient supply in trees and previous research by the applicant has revealed that changes in light use efficiency (LUE), nitrogen and carbon allocation into pigments result from differences in irradiance and temperature, but BVC emissions are not well predicted by current carbon-allocation and climate models. This project hypothesizes that control and humidified trees vary in LUE due to differences in sink-source limited growth and resultant differences in allocation of carbon to synthesis of pigments or to BVCs. As an outcome of this project, the feedback mechanisms between carbon production, allocation and BVC emissions will be analyzed and the link between air humidity and BVC production will be proposed as an important agent of climate change. The project will substantially elaborate the professional competence and perspectives of the applicant.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOVOLHUM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOVOLHUM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

SpaTime_AnTB (2020)

Single-cell spatiotemporal analysis of Mycobacterium tuberculosis responses to antibiotics within host microenvironments

Read More  

TCFLAND2SEA (2020)

Thawing Carbon From LAND to SEA: Microbial Degradation of Organic Matter and Response to Thawing Permafrost in the Northeast Siberian Land-Shelf System

Read More