Opendata, web and dolomites

BRAIN CAMO SIGNED

Camouflaging electronics in the brain with immobilized liquid coatings

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BRAIN CAMO project word cloud

Explore the words cloud of the BRAIN CAMO project. It provides you a very rough idea of what is the project "BRAIN CAMO" about.

cells    promotes    performance    mismatch    insulating    treat    liquid    shown    neural    environment    probe    underlying    area    biocompatibility    metal    silicon    tissues    organics    surrounding    fail    parkinson    disorders    chemistry    capsule    fronts    water    date    coatings    crack    evaluations    chronic    ilcs    anchored    tools    induce    exceed    gel    stiffness    approximately    neuronal    materials    million    surface    immune    immiscible    mechanical    liquids    solely    recording    euros    billion    probes    insulation    reducing    depression    material    electronics    strategy    tissue    shields    vivo    bare    vast    suffering    stimulating    comprised    interfacing    introducing    proteins    fibrous    flexible    shield    immobilized    adherence    uk    encapsulation    death    implantable    degrade    utilized    inflammation    invaluable    expose    polymer    applicable    alone    45    majority    gt    barrier    brain    multiple    130    epilepsy    organic    healthcare   

Project "BRAIN CAMO" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2020-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

In the UK alone, those suffering from brain disorders is approximately 45 million and associated healthcare costs exceed 130 billion euros per year. Neural electronics for recording and stimulating brain activity have become invaluable tools to study and treat disorders such as epilepsy, depression, and Parkinson’s. Currently used neural probes often fail in chronic evaluations (>1 year); the stiffness and chemistry of probes induce inflammation, neuronal death, and fibrous capsule formation. When examining a neural probe, the vast majority of the surface area is comprised of the encapsulation material; an insulating polymer that shields electronics from tissue. To date, most studies of implantable electronics have utilized only bare insulation as the tissue-interfacing material, yet in long-term studies, these insulation materials degrade and crack from the in vivo environment and expose the underlying electronics. Furthermore, adherence of proteins and cells to insulation promotes the immune response against the probe. Therefore, introducing an effective barrier between insulation and tissue is a highly promising approach for improving probe biocompatibility and performance. In this proposal, the approach is to use water-immiscible liquids anchored to the surface by a gel to shield neural probes from surrounding tissue. The proposed strategy of these immobilized liquid coatings (ILCs) is applicable to all implantable electronics, including those for other tissues and those based on various materials (silicon, metal, and organics). This proposal will focus solely on organic probes, which can be flexible and have recently been shown to improve biocompatibility by the reducing the mechanical mismatch between probe and brain tissue. Therefore, applying ILCs to organic neural probes will advance the current state-of-the-art and will address chronic biocompatibility on multiple fronts.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BRAIN CAMO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BRAIN CAMO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

DOC-Stim (2020)

Communication and rehabilitation for people with Disorders of consciousness via Brain-Computer Interfaces

Read More  

MOSAiC (2019)

Multimode cOrrelations in microwave photonics with Superconducting quAntum Circuits

Read More