Opendata, web and dolomites

BRAIN CAMO SIGNED

Camouflaging electronics in the brain with immobilized liquid coatings

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BRAIN CAMO project word cloud

Explore the words cloud of the BRAIN CAMO project. It provides you a very rough idea of what is the project "BRAIN CAMO" about.

material    date    reducing    implantable    fail    billion    bare    materials    comprised    coatings    45    stimulating    induce    chemistry    expose    encapsulation    proteins    immiscible    exceed    neuronal    recording    fronts    death    insulating    disorders    liquid    euros    strategy    mechanical    probe    shown    mismatch    uk    fibrous    alone    applicable    metal    immobilized    capsule    silicon    biocompatibility    brain    vast    interfacing    adherence    organics    stiffness    water    electronics    epilepsy    introducing    anchored    environment    immune    tissues    liquids    area    surrounding    million    probes    promotes    surface    gel    suffering    shields    vivo    cells    organic    underlying    tools    degrade    depression    evaluations    approximately    insulation    tissue    ilcs    130    polymer    solely    chronic    barrier    invaluable    performance    inflammation    majority    utilized    neural    multiple    crack    flexible    treat    gt    healthcare    parkinson    shield   

Project "BRAIN CAMO" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2020-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

In the UK alone, those suffering from brain disorders is approximately 45 million and associated healthcare costs exceed 130 billion euros per year. Neural electronics for recording and stimulating brain activity have become invaluable tools to study and treat disorders such as epilepsy, depression, and Parkinson’s. Currently used neural probes often fail in chronic evaluations (>1 year); the stiffness and chemistry of probes induce inflammation, neuronal death, and fibrous capsule formation. When examining a neural probe, the vast majority of the surface area is comprised of the encapsulation material; an insulating polymer that shields electronics from tissue. To date, most studies of implantable electronics have utilized only bare insulation as the tissue-interfacing material, yet in long-term studies, these insulation materials degrade and crack from the in vivo environment and expose the underlying electronics. Furthermore, adherence of proteins and cells to insulation promotes the immune response against the probe. Therefore, introducing an effective barrier between insulation and tissue is a highly promising approach for improving probe biocompatibility and performance. In this proposal, the approach is to use water-immiscible liquids anchored to the surface by a gel to shield neural probes from surrounding tissue. The proposed strategy of these immobilized liquid coatings (ILCs) is applicable to all implantable electronics, including those for other tissues and those based on various materials (silicon, metal, and organics). This proposal will focus solely on organic probes, which can be flexible and have recently been shown to improve biocompatibility by the reducing the mechanical mismatch between probe and brain tissue. Therefore, applying ILCs to organic neural probes will advance the current state-of-the-art and will address chronic biocompatibility on multiple fronts.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BRAIN CAMO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BRAIN CAMO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More