Opendata, web and dolomites

SINGREP SIGNED

Linking singularity theory and representation theory with homological methods

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SINGREP project word cloud

Explore the words cloud of the SINGREP project. It provides you a very rough idea of what is the project "SINGREP" about.

macaulay    leader    analytical    resolutions    reflection    seemingly    relation    integral    maximal    ring    equations    commutative    nc    construction    supervised    geometric    considerations    rings    homological    crossing    breakdown    complete    geometry    theoretic    algebra    exploited    techniques    modules    groups    apart    marsh    dimension    understand    polynomial    discriminants    noncommutative    quivers    serve    constructed    positive    normal    distant    eleonore    integrate    roughly    varieties    singularity    faber    friezes    intersection    singularities    characterization    scientific    mckay    robert    cluster    directions    operators    necessarily    phenomena    singular    speaking    theoretical    pseudo    point    representation    indeterminacy    tries    arm    bridge    robot    university    rs    differential    corresponds    geometrically    computation    break    cusps    passes    cohen    group    algebraic    points    situation    theory    categories    lies    crepant    leeds    collapse    correspondence    global    practical    zerosets   

Project "SINGREP" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 183˙454.00

Map

 Project objective

In algebraic geometry one tries to understand and explain geometric phenomena of zerosets of polynomial equations (algebraic varieties) with algebraic techniques. Singularities of algebraic varieties are, roughly speaking, points of indeterminacy, where most analytical methods collapse. Geometrically, this corresponds e.g. to cusps or crossing points. In a practical example, the arm of a robot can break if it passes through a singular point, which could result in a complete breakdown of the system. Such a situation should be avoided by theoretical considerations.

This project lies at the intersection of singularity theory, (non-commutative) algebraic geometry, commutative algebra, and representation theory. The main goal is to develop homological methods to understand geometric phenomena of algebraic varieties in the presence of singularities and use them to study representation theoretic concepts such as cluster categories and friezes. The project will provide a bridge between these seemingly distant areas that can be exploited in both directions.

The specific research objectives: (1) Construction of noncommutative (crepant) resolutions of singularities (NC(C)Rs), in particular for not necessarily normal varieties/rings: computation of global dimension, application to positive characteristic (global dimension of ring of differential operators) (2) McKay correspondence for reflection groups: study of the geometry of discriminants of pseudo-reflection groups and their relation to the representation theory of the groups, characterization of McKay quivers (3) Friezes and singularities: show how (higher) integral friezes can be constructed from cluster categories and categories of maximal Cohen-Macaulay modules

The project will be carried out by Eleonore Faber, supervised by Robert Marsh at the University of Leeds. Apart from the scientific value, this project should serve to integrate Faber in the algebra research group and to establish her as a research leader.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SINGREP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SINGREP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

VINCI (2020)

The Value of Information and Choice to Improve Control.

Read More