Opendata, web and dolomites


Linking singularity theory and representation theory with homological methods

Total Cost €


EC-Contrib. €






 SINGREP project word cloud

Explore the words cloud of the SINGREP project. It provides you a very rough idea of what is the project "SINGREP" about.

reflection    theoretic    polynomial    points    global    leader    rings    cusps    computation    ring    discriminants    crossing    crepant    varieties    practical    lies    distant    zerosets    friezes    eleonore    point    singularity    breakdown    cohen    faber    seemingly    serve    cluster    tries    noncommutative    equations    integral    group    roughly    theory    maximal    arm    supervised    indeterminacy    corresponds    geometrically    operators    resolutions    robert    normal    characterization    considerations    algebra    differential    dimension    quivers    groups    representation    constructed    complete    nc    techniques    categories    robot    singular    modules    homological    leeds    analytical    directions    positive    algebraic    speaking    scientific    commutative    bridge    phenomena    singularities    correspondence    mckay    geometry    theoretical    marsh    break    integrate    university    exploited    understand    geometric    situation    collapse    intersection    rs    apart    construction    passes    necessarily    relation    macaulay    pseudo   

Project "SINGREP" data sheet

The following table provides information about the project.


Organization address
city: LEEDS
postcode: LS2 9JT

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-07-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 183˙454.00


 Project objective

In algebraic geometry one tries to understand and explain geometric phenomena of zerosets of polynomial equations (algebraic varieties) with algebraic techniques. Singularities of algebraic varieties are, roughly speaking, points of indeterminacy, where most analytical methods collapse. Geometrically, this corresponds e.g. to cusps or crossing points. In a practical example, the arm of a robot can break if it passes through a singular point, which could result in a complete breakdown of the system. Such a situation should be avoided by theoretical considerations.

This project lies at the intersection of singularity theory, (non-commutative) algebraic geometry, commutative algebra, and representation theory. The main goal is to develop homological methods to understand geometric phenomena of algebraic varieties in the presence of singularities and use them to study representation theoretic concepts such as cluster categories and friezes. The project will provide a bridge between these seemingly distant areas that can be exploited in both directions.

The specific research objectives: (1) Construction of noncommutative (crepant) resolutions of singularities (NC(C)Rs), in particular for not necessarily normal varieties/rings: computation of global dimension, application to positive characteristic (global dimension of ring of differential operators) (2) McKay correspondence for reflection groups: study of the geometry of discriminants of pseudo-reflection groups and their relation to the representation theory of the groups, characterization of McKay quivers (3) Friezes and singularities: show how (higher) integral friezes can be constructed from cluster categories and categories of maximal Cohen-Macaulay modules

The project will be carried out by Eleonore Faber, supervised by Robert Marsh at the University of Leeds. Apart from the scientific value, this project should serve to integrate Faber in the algebra research group and to establish her as a research leader.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SINGREP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SINGREP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Drought (2020)

Drought coping strategies in southern Africa 1966-2016

Read More  

InterTJRPB (2019)

The Interplay between Transitional Justice and Reconciliation in Peacebuilding

Read More  

KiT-FIG (2019)

Kidney Transplantation - Functional ImmunoGenomics

Read More