Opendata, web and dolomites


Linking singularity theory and representation theory with homological methods

Total Cost €


EC-Contrib. €






 SINGREP project word cloud

Explore the words cloud of the SINGREP project. It provides you a very rough idea of what is the project "SINGREP" about.

global    noncommutative    singularities    theoretical    macaulay    construction    zerosets    relation    representation    robot    lies    leeds    reflection    indeterminacy    directions    pseudo    supervised    speaking    robert    nc    techniques    groups    commutative    friezes    discriminants    bridge    rings    necessarily    marsh    geometrically    categories    positive    passes    intersection    points    theory    phenomena    cohen    considerations    understand    roughly    normal    point    leader    ring    cusps    scientific    distant    arm    apart    exploited    polynomial    theoretic    analytical    constructed    maximal    resolutions    differential    computation    seemingly    crepant    cluster    equations    serve    corresponds    rs    singular    algebra    modules    varieties    geometric    practical    operators    collapse    situation    correspondence    integrate    eleonore    homological    geometry    university    integral    complete    crossing    group    singularity    dimension    mckay    breakdown    faber    algebraic    quivers    tries    characterization    break   

Project "SINGREP" data sheet

The following table provides information about the project.


Organization address
city: LEEDS
postcode: LS2 9JT

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-07-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 183˙454.00


 Project objective

In algebraic geometry one tries to understand and explain geometric phenomena of zerosets of polynomial equations (algebraic varieties) with algebraic techniques. Singularities of algebraic varieties are, roughly speaking, points of indeterminacy, where most analytical methods collapse. Geometrically, this corresponds e.g. to cusps or crossing points. In a practical example, the arm of a robot can break if it passes through a singular point, which could result in a complete breakdown of the system. Such a situation should be avoided by theoretical considerations.

This project lies at the intersection of singularity theory, (non-commutative) algebraic geometry, commutative algebra, and representation theory. The main goal is to develop homological methods to understand geometric phenomena of algebraic varieties in the presence of singularities and use them to study representation theoretic concepts such as cluster categories and friezes. The project will provide a bridge between these seemingly distant areas that can be exploited in both directions.

The specific research objectives: (1) Construction of noncommutative (crepant) resolutions of singularities (NC(C)Rs), in particular for not necessarily normal varieties/rings: computation of global dimension, application to positive characteristic (global dimension of ring of differential operators) (2) McKay correspondence for reflection groups: study of the geometry of discriminants of pseudo-reflection groups and their relation to the representation theory of the groups, characterization of McKay quivers (3) Friezes and singularities: show how (higher) integral friezes can be constructed from cluster categories and categories of maximal Cohen-Macaulay modules

The project will be carried out by Eleonore Faber, supervised by Robert Marsh at the University of Leeds. Apart from the scientific value, this project should serve to integrate Faber in the algebra research group and to establish her as a research leader.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SINGREP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SINGREP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

BrownianReactivation (2019)

Neural stochasticity and criticality in memory replay

Read More  

XmonMASER (2019)

Josephson maser and heat transport in dissipative open quantum systems

Read More  


Secondary organic Aerosols Production in pre and post-Industrial-like ENvironments : The Impact of biogenic and Anthropogenic emissions on cliMate

Read More