Opendata, web and dolomites

SINGREP SIGNED

Linking singularity theory and representation theory with homological methods

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SINGREP project word cloud

Explore the words cloud of the SINGREP project. It provides you a very rough idea of what is the project "SINGREP" about.

reflection    passes    rs    marsh    university    computation    cluster    macaulay    scientific    tries    distant    integral    algebra    roughly    construction    discriminants    singularities    relation    techniques    polynomial    directions    commutative    varieties    corresponds    exploited    operators    arm    representation    cohen    robot    resolutions    homological    practical    speaking    bridge    crepant    supervised    point    complete    pseudo    zerosets    nc    modules    seemingly    quivers    collapse    equations    differential    algebraic    lies    breakdown    break    eleonore    theoretical    group    situation    intersection    dimension    robert    cusps    geometrically    phenomena    considerations    friezes    rings    points    categories    theoretic    understand    ring    theory    serve    positive    necessarily    faber    normal    geometric    correspondence    constructed    global    integrate    leeds    noncommutative    geometry    crossing    maximal    characterization    indeterminacy    leader    apart    singular    groups    analytical    singularity    mckay   

Project "SINGREP" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 183˙454.00

Map

 Project objective

In algebraic geometry one tries to understand and explain geometric phenomena of zerosets of polynomial equations (algebraic varieties) with algebraic techniques. Singularities of algebraic varieties are, roughly speaking, points of indeterminacy, where most analytical methods collapse. Geometrically, this corresponds e.g. to cusps or crossing points. In a practical example, the arm of a robot can break if it passes through a singular point, which could result in a complete breakdown of the system. Such a situation should be avoided by theoretical considerations.

This project lies at the intersection of singularity theory, (non-commutative) algebraic geometry, commutative algebra, and representation theory. The main goal is to develop homological methods to understand geometric phenomena of algebraic varieties in the presence of singularities and use them to study representation theoretic concepts such as cluster categories and friezes. The project will provide a bridge between these seemingly distant areas that can be exploited in both directions.

The specific research objectives: (1) Construction of noncommutative (crepant) resolutions of singularities (NC(C)Rs), in particular for not necessarily normal varieties/rings: computation of global dimension, application to positive characteristic (global dimension of ring of differential operators) (2) McKay correspondence for reflection groups: study of the geometry of discriminants of pseudo-reflection groups and their relation to the representation theory of the groups, characterization of McKay quivers (3) Friezes and singularities: show how (higher) integral friezes can be constructed from cluster categories and categories of maximal Cohen-Macaulay modules

The project will be carried out by Eleonore Faber, supervised by Robert Marsh at the University of Leeds. Apart from the scientific value, this project should serve to integrate Faber in the algebra research group and to establish her as a research leader.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SINGREP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SINGREP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More  

CRAS (2019)

Climate change and Resilience of Agricultural System: an econometric and computational analysis

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More