Opendata, web and dolomites

MULTI_FOLDS SIGNED

Not one but many: adopting structural flexibility in the analysis of the evolution of lncRNAs.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MULTI_FOLDS" data sheet

The following table provides information about the project.

Coordinator
BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION 

Organization address
address: Calle Jordi Girona 31
city: BARCELONA
postcode: 8034
website: www.bsc.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 170˙121 €
 EC max contribution 170˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION ES (BARCELONA) coordinator 85˙060.00
2    FUNDACIO CENTRE DE REGULACIO GENOMICA ES (BARCELONA) participant 85˙060.00

Map

 Project objective

Long non-coding RNAs (lncRNAs) are abundant in mammalian transcriptomes. However, it remains unclear how many of them are functional, and how their functions are performed. LncRNAs seem to be poorly conserved at the sequence level, but some of them share conserved structural elements and are present at syntenic genomic positions in different species. A recent study revealed that secondary structure constrains sequence variation in lncRNAs, so that polymorphisms are depleted in low accessibility regions and tend to be neutral with respect to structural stability. This is in contrast with previous analyses that dismissed relationships between structure and sequence evolution in lncRNAs. A crucial difference in the former study is that the considered structural feature, accessibility, is computed from an ensemble of thermodynamically stable structures. Moreover, high-throughput structure probing shows that many lncRNA sites exhibit positive signals for both single- and double-strand specific enzymes, suggesting several structures may coexist. Based on this, I argue that the difficulty of identifying links between sequence and structure in lncRNAs results in part from limitations imposed by assuming a single, stable structure. I thus propose to consider ensembles of co-existing structures in lncRNAs, and develop a new computational framework that enables this. Using this new paradigm, I will study lncRNAs from animals and fungi by coupling experimental data from RNA structure probing to novel computational approaches that overcome current limitations. Overall, this novel multidisciplinary approach will profoundly impact our understanding of the evolution of lncRNAs. Furthermore, my project should help to fill the gap between structure and function of lncRNAs in different species. Moreover, as many lncRNAs are involved in a variety of human diseases, these results may provide insights towards novel clinical applications.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MULTI_FOLDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MULTI_FOLDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Cartesian Networks (2020)

Cartesian Networks in Early Modern Europe: A Quantitative and Interdisciplinary Approach

Read More  

Self-EsteemProcesses (2020)

A self-esteem process framework of the transition to work

Read More  

WONDER (2019)

Low-Bandgap Fused Ring Electron Acceptors towards High-Efficiency Organic Solar Cells

Read More