Opendata, web and dolomites


Carbon-Oxynitride Coupled Artificial Photosynthesis System For Solar Water Splitting Beyond 600 nm

Total Cost €


EC-Contrib. €






Project "H2O-SPLIT" data sheet

The following table provides information about the project.


Organization address
address: STRASSE DES 17 JUNI 135
city: BERLIN
postcode: 10623

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The main goal of this project, through which the Experienced Researcher will develop new scientific, entrepreneurial and transferable skills by advanced training, is to develop novel carbon-oxynitride coupled artificial photosynthesis system for solar water splitting beyond 600 nm. As a member of the 600 nm-class photocatalysts family, BaTaO2N has recently demonstrated the solar-to-hydrogen conversion efficiency of 0.7% at 1.0 VRHE. To further enhance the conversion efficiency and photostability of BaTaO2N for future application, the present project challenges the modern scientific-engineering concepts for coupling BaTaO2N with universal, inexpensive, and unique carbon allotropes. Can all carbon allotropes be integrated to form efficient, inexpensive, photostable, and scalable artificial photosynthesis system for solar water splitting beyond 600 nm? To give an answer, the this project has four scientific objectives: (i) to engineer the band structure of BaTaO2N by p-type doping for overall water splitting; (ii) to study the dimensional effect of carbon allotrope (0D-fullerene, 1D-nanotubes, 2D-graphene, and 3D-nanohorns) on solar water splitting of BaTaO2N; (iii) to evaluate solar water splitting efficiency, photo-stability, and scalability of the carbon-BaTaO2N composite; and (iv) to design a monolithically integrated photocatalyst module (device) based on the most suitable carbon allotrope and doped BaTaO2N. Having strong fundamental, applied, and multidisciplinary nature, this project has a potential capacity to raise the competitiveness and excellence of the European Photocatalysis Science and Technology. As today Europe continues to lead the world on climate action with its roadmap to moving to a competitive low-carbon economy by 2050, this project focusing on efficient, inexpensive and sustainable production of renewable hydrogen energy by solar water splitting is in line with EU’s climate action and will contribute to the knowledge-based economy of Europe.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "H2O-SPLIT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "H2O-SPLIT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

TIPTOP (2019)

Tensoring Positive Maps on Operator Structures

Read More