Opendata, web and dolomites

VEILA SIGNED

Identifying the source of unknown volcanic eruptions in Late Antiquity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 VEILA project word cloud

Explore the words cloud of the VEILA project. It provides you a very rough idea of what is the project "VEILA" about.

demise    volcanic    530    sulphate    forcing    glaciology    atmosphere    trapped    locate    implicated    clustering    trajectory    empires    temporal    lalia    century    correlating    global    680    shorter    dispersal    antique    6th    lia    climate    geochemical    1850    1300    ce    circa    little    played    polar    tephrochronologists    veils    correlations    samples    coincides    characterising    horizons    archives    extract    stratospheric    history    upheavals    source    latter    outputs    shaped    dendrochronology    fingerprints    contributed    cores    migrations    societal    7th    potentially    era    eruptions    climatology    sulphur    eurasian    deposition    interface    volcanism    climatic    impacts    inform    cooler    particles    regional    equatorial    travelled    arctic    lake    occurred    left    reorganisations    ashes    cooling    series    unknown    antarctic    centennial    ash    interdisciplinary    eurasia    sources    human    ice    political    age    micrometric    episode    suspected    notably    aerosols    tephrochronology    caused    period    methodological    sediment   

Project "VEILA" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Volcanism has shaped the human trajectory as a result of the regional impacts of ash deposition and through global climate change caused by stratospheric veils of volcanic sulphate aerosols. Volcanic forcing of climate is suspected to be implicated in centennial scale climatic cooling during the Common Era, notably in triggering the Little Ice Age (LIA, circa 1300-1850 CE), and the shorter but cooler Late Antique Little Ice Age (LALIA, circa 530-680 CE). The latter episode would have contributed to major societal reorganisations that occurred across Eurasia, including the rise and demise of empires, migrations and political upheavals. The LALIA coincides with a series of large volcanic eruptions of unknown source, only identified by sulphur-rich horizons in polar ice cores, left by aerosols trapped in the ice after dispersal through the high atmosphere. This project aims to locate the volcanic sources of these unknown 6th and 7th century eruptions, by characterising and correlating their geochemical fingerprints in global archives, including Antarctic and Arctic ice cores and equatorial lake sediment cores. An interdisciplinary approach at the interface of glaciology, tephrochronology, dendrochronology, and climatology will be used to extract and analyse micrometric particles of far-travelled ashes and to identify correlations between different the samples and potentially to identify the source. The results of the proposed research will provide methodological advances of wider interest to tephrochronologists, and will facilitate modelling of the climate impacts of these eruptions. The outputs will provide a better understanding of the role of volcanism in centennial scale climate cooling during the Common Era, and inform the extent to which volcanism and associated climate forcing played a role in Eurasian history in the Late Antique period. They will also be relevant to understanding the potential impacts of future temporal clustering of climate-forcing eruptions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VEILA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VEILA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CORRELATION (2020)

Characterization and prediction of service-level traffic for future sliced mobile network

Read More  

Photonic Radar (2019)

Implementation of Long Reach Hybrid Photonic Radar System and convergence over FSO and PON Networks

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More