Opendata, web and dolomites


Knowledge graph completion using Artificial Neural Networks for Herb-Drug Interaction discovery

Total Cost €


EC-Contrib. €






Project "kANNa" data sheet

The following table provides information about the project.


Organization address
postcode: 33000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 185˙076 €
 EC max contribution 185˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE BORDEAUX FR (BORDEAUX) coordinator 185˙076.00


 Project objective

With the growing popularity of herbal drugs an increasing number of scientific studies report information about herb-drug interactions that can significantly alter the effects of a drug. Keeping up with the current publication rate is not feasible, therefore there is a clear need for computational methods for early detection of herb-drug interactions that will enable better public and physician understanding of herbal products. But the costs of manually representing knowledge about herb-drug interactions in a machine processable way are prohibitive, therefore domain expertise has to be leveraged indirectly from domain-specific corpora using Information Extraction. This Marie Curie European Fellowship proposes a Deep Learning approach based on Artificial Neural Networks (ANN) and Information Extraction to monitor medical literature and construct a knowledge base of herb-drug interactions together with supporting evidence in the form of interaction mechanisms. To cope with the problem of incorrect or missing information we will consolidate the resulting knowledge graph using knowledge graph completion that predicts the probability of existence or correctness of typed edges in the graph. Advanced graph visualization techniques will be employed to develop intuitive interfaces for analyzing and comparing herb-drug interactions and underlying mechanisms. The Fellowship is expected to increase knowledge on clinically significant herb-drug interactions which will contribute to improved public safety. The Host will provide training on Deep Learning approaches for knowledge extraction which will open opportunities for a senior researcher position, in turn the Fellow will transfer Natural Language Processing skills and European collaborations to the host.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KANNA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "KANNA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More  

OCHRE (2019)

Oat CHRomosome Evolution and drivers enabling widespread terminal intergenomic translocations in polyploid species

Read More  

EngPTC2 (2019)

Exploring new technologies for the next generation pulse tube cryocooler below 2K

Read More