Opendata, web and dolomites

G-Statistics SIGNED

Foundations of Geometric Statistics and Their Application in the Life Sciences

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 G-Statistics project word cloud

Explore the words cloud of the G-Statistics project. It provides you a very rough idea of what is the project "G-Statistics" about.

convenient    explore    singularities    quotient    eacute    object    power    databases    provides    rephrasing    inventing    forecasting    natural    approximate    medical    emphasis    put    computational    anatomical    hierarchically    unify    structures    manifolds    mainly    metric    transformation    linear    images    naturally    dimension    estimations    approximation    gauge    life    appear    affine    groups    mathematics    surveying    subspaces    effectiveness    geometry    mathematical    negatively    diverges    theorems    euclidean    exemplifying    illustrate    invariance    efficient    principled    lie    estimation    shapes    anatomy    true    spaces    poincar    radically    crossing    geometric    stratification    stratified    physics    arise    methodology    estimate    riemannian    structure    specializations    curved    tools    sciences    explaining    establishing    statisticians    ways    discipline    requiring    connection    foundations    curvature    statistics    algorithms    unreasonable    illustrating    statistical    theories    data    encode    evolution    laws    flags   

Project "G-Statistics" data sheet

The following table provides information about the project.

Coordinator
INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE 

Organization address
address: DOMAINE DE VOLUCEAU ROCQUENCOURT
city: LE CHESNAY CEDEX
postcode: 78153
website: www.inria.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙183˙583 €
 EC max contribution 2˙183˙583 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE FR (LE CHESNAY CEDEX) coordinator 2˙183˙583.00

Map

 Project objective

'Invariance under gauge transformation groups provides the natural structure explaining the laws of physics. In life sciences, new mathematical tools are needed to estimate approximate invariance and establish general but approximate laws. Rephrasing Poincaré: a geometry cannot be more true than another, it may just be more convenient, and statisticians must find the most convenient one for their data. At the crossing of geometry and statistics, G-Statistics aims at establishing the mathematical foundations of geometric statistics and exemplifying their impact on selected applications in the life sciences.

So far, mainly Riemannian manifolds and negatively curved metric spaces have been studied. Other geometric structures like quotient spaces, stratified spaces or affine connection spaces naturally arise in applications. G-Statistics will explore ways to unify statistical estimation theories, explaining how the statistical estimations diverges from the Euclidean case in the presence of curvature, singularities, stratification. Beyond classical manifolds, particular emphasis will be put on flags of subspaces in manifolds as they appear to be natural mathematical object to encode hierarchically embedded approximation spaces.

In order to establish geometric statistics as an effective discipline, G-Statistics will propose new mathematical structures and theorems to characterize their properties. It will also implement novel generic algorithms and illustrate the impact of some of their efficient specializations on selected applications in life sciences. Surveying the manifolds of anatomical shapes and forecasting their evolution from databases of medical images is a key problem in computational anatomy requiring dimension reduction in non-linear spaces and Lie groups. By inventing radically new principled estimations methods, we aim at illustrating the power of the methodology and strengthening the 'unreasonable effectiveness of mathematics' for life sciences.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "G-STATISTICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "G-STATISTICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More