Opendata, web and dolomites

G-Statistics SIGNED

Foundations of Geometric Statistics and Their Application in the Life Sciences

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 G-Statistics project word cloud

Explore the words cloud of the G-Statistics project. It provides you a very rough idea of what is the project "G-Statistics" about.

mathematics    stratification    mathematical    evolution    curvature    effectiveness    encode    statisticians    mainly    sciences    spaces    shapes    illustrate    structures    singularities    tools    radically    specializations    statistics    hierarchically    illustrating    manifolds    emphasis    unify    life    transformation    stratified    object    put    rephrasing    anatomy    foundations    quotient    arise    theories    lie    linear    requiring    theorems    principled    euclidean    negatively    invariance    power    databases    ways    physics    estimations    appear    anatomical    exemplifying    approximate    true    connection    unreasonable    diverges    geometric    estimate    affine    riemannian    provides    efficient    methodology    estimation    dimension    laws    groups    gauge    curved    discipline    naturally    metric    images    flags    forecasting    natural    inventing    poincar    medical    structure    geometry    convenient    data    algorithms    subspaces    crossing    computational    surveying    statistical    establishing    eacute    approximation    explore    explaining   

Project "G-Statistics" data sheet

The following table provides information about the project.

Coordinator
INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE 

Organization address
address: DOMAINE DE VOLUCEAU ROCQUENCOURT
city: LE CHESNAY CEDEX
postcode: 78153
website: www.inria.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙183˙583 €
 EC max contribution 2˙183˙583 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE FR (LE CHESNAY CEDEX) coordinator 2˙183˙583.00

Map

 Project objective

'Invariance under gauge transformation groups provides the natural structure explaining the laws of physics. In life sciences, new mathematical tools are needed to estimate approximate invariance and establish general but approximate laws. Rephrasing Poincaré: a geometry cannot be more true than another, it may just be more convenient, and statisticians must find the most convenient one for their data. At the crossing of geometry and statistics, G-Statistics aims at establishing the mathematical foundations of geometric statistics and exemplifying their impact on selected applications in the life sciences.

So far, mainly Riemannian manifolds and negatively curved metric spaces have been studied. Other geometric structures like quotient spaces, stratified spaces or affine connection spaces naturally arise in applications. G-Statistics will explore ways to unify statistical estimation theories, explaining how the statistical estimations diverges from the Euclidean case in the presence of curvature, singularities, stratification. Beyond classical manifolds, particular emphasis will be put on flags of subspaces in manifolds as they appear to be natural mathematical object to encode hierarchically embedded approximation spaces.

In order to establish geometric statistics as an effective discipline, G-Statistics will propose new mathematical structures and theorems to characterize their properties. It will also implement novel generic algorithms and illustrate the impact of some of their efficient specializations on selected applications in life sciences. Surveying the manifolds of anatomical shapes and forecasting their evolution from databases of medical images is a key problem in computational anatomy requiring dimension reduction in non-linear spaces and Lie groups. By inventing radically new principled estimations methods, we aim at illustrating the power of the methodology and strengthening the 'unreasonable effectiveness of mathematics' for life sciences.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "G-STATISTICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "G-STATISTICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

AdaptiveResponse (2018)

The evolution of adaptive response mechanisms

Read More  

EpigeneticScars (2020)

Understanding DSB repair from pathway choice to long term effects and their consequences.

Read More  

BABE (2018)

Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants

Read More