Opendata, web and dolomites

FRAPPANT SIGNED

Formal Reasoning About Probabilistic Programs: Breaking New Ground for Automation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FRAPPANT project word cloud

Explore the words cloud of the FRAPPANT project. It provides you a very rough idea of what is the project "FRAPPANT" about.

bugs    spearhead    accessible    np    answered    correctness    formal    model    halt    driving    barren    probability    landscape    notoriously    leveraging    thing    uncertain    pivotal    hard    whereas    security    question    frappant    algorithms    robots    reasoning    precision    easily    randomised    verification    exact    learning    weakest    bayesian    though    cars    grasp    ubiquitous    ai    one    undecidable    repair    recipes    deductive    fill    alone    elementary    questions    naturally    tackled    modeling    self    code    models    equivalence    halting    formally    networks    world    steer    robustness    automatically    checking    statistical    mixture    programs    size    verifiable    computer    relatively    programmer    probabilistic    infer    autonomous    synthesis    graphical    inference    describe    encroaching    observations    solving    context    data    small    precondition    mechanisms    invariant    programming    predictable    guarantees    infancy    static    techniques    science    checkable    machine    intelligence    right    loop   

Project "FRAPPANT" data sheet

The following table provides information about the project.

Coordinator
RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN 

Organization address
address: TEMPLERGRABEN 55
city: AACHEN
postcode: 52062
website: www.rwth-aachen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙491˙250 €
 EC max contribution 2˙491˙250 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN DE (AACHEN) coordinator 2˙491˙250.00

Map

 Project objective

Probabilistic programs describe recipes on how to infer statistical conclusions about data from a complex mixture of uncertain data and real-world observations. They can represent probabilistic graphical models far beyond the capabilities of Bayesian networks and are expected to have a major impact on machine intelligence.

Probabilistic programs are ubiquitous. They steer autonomous robots and self-driving cars, are key to describe security mechanisms, naturally code up randomised algorithms for solving NP-hard problems, and are rapidly encroaching AI. Probabilistic programming aims to make probabilistic modeling and machine learning accessible to the programmer.

Probabilistic programs, though typically relatively small in size, are hard to grasp, let alone automatically checkable. Are they doing the right thing? What’s their precision? These questions are notoriously hard — even the most elementary question “does a program halt with probability one?” is “more undecidable” than the halting problem — and can (if at all) be answered with statistical evidence only. Bugs thus easily occur. Hard guarantees are called for. The objective of this project is to enable predictable probabilistic programming. We do so by developing formal verification techniques.

Whereas program correctness is pivotal in computer science, the formal verification of probabilistic programs is in its infancy. The project aims to fill this barren landscape by developing program analysis techniques, leveraging model checking, deductive verification, and static analysis. Challenging problems such as checking program equivalence, loop-invariant and parameter synthesis, program repair, program robustness and exact inference using weakest precondition reasoning will be tackled. The techniques will be evaluated in the context of probabilistic graphical models, randomised algorithms, and autonomous robots.

FRAPPANT will spearhead formally verifiable probabilistic programming.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FRAPPANT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FRAPPANT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EXTREME (2020)

The Epistemology and Ethics of Fundamentalism

Read More  

THERMONANO (2018)

Nanoassemblies for the subcutaneous self-administration of anticancer drugs

Read More  

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More