Opendata, web and dolomites

NMR-DisAgg SIGNED

The Dynamic Composition of the Protein Chaperone Network: Unraveling Human Protein Disaggregation via NMR Spectroscopy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NMR-DisAgg project word cloud

Explore the words cloud of the NMR-DisAgg project. It provides you a very rough idea of what is the project "NMR-DisAgg" about.

trosy    first    disease    critical    heat    little    methyl    performing    additional    interactions    amyloid    regarding    cellular    dissolving    homeostasis    cest    hsp40    maintaining    operate    neurodegenerative    dynamic    schemes    observe    cells    amyloids    time    series    nature    break    assays    labeling    characterization    aggregates    shsp    experiments    complexes    populated    recognizing    host    lab    techniques    monitor    human    dnaj    aside    refolding    proven    ultimately    course    substrate    members    structure    structural    hsp70    functions    initial    suited    client    diseases    combinations    linked    combining    exact    chaperones    biophysical    though    protein    transient    responsible    diverse    cpmg    group    small    potentially    remodeling    clients    functional    reaction    protect    discovered    ideally    chaperone    itself    molecular    shock    recognition    types    fibers    apart    performed    proteins    nmr    certain    disaggregation    extremely    perform    toxic    families   

Project "NMR-DisAgg" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙499˙956 €
 EC max contribution 1˙499˙956 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙499˙956.00

Map

 Project objective

Molecular chaperones are a diverse group of proteins critical to maintaining cellular homeostasis. Aside from protein refolding, it has recently been discovered that certain combinations of human chaperones can break apart toxic protein aggregates and even amyloids that have been linked to a host of neurodegenerative diseases. The first chaperones in this disaggregation reaction that are responsible for recognizing and performing initial remodeling of aggregates, are members of the Hsp40 (DnaJ) and small heat shock protein (sHSP) families. Very little, though, is known regarding how these chaperones perform their functions, and characterization of sHsp- and DnaJ-substrate complexes by most structural techniques has proven extremely challenging, as most chaperones are dynamic in nature and typically operate through a series of transient interactions with both their clients and other chaperones. The advanced NMR techniques used in our lab, however, are ideally suited for the study of these exact types of dynamic systems, and include recently developed experiments (CEST, CPMG) that allow us to monitor the transient and low populated protein states typical of chaperone-chaperone and chaperone-client interactions, as well as to study the structure of these potentially very large protein complexes (methyl-TROSY). By exploiting these NMR methodologies and additional, novel labeling schemes, we will characterize, for the first time, the recognition and substrate remodeling performed by the many members of the DnaJ and sHsp chaperone families on their clients. We will then take these approaches one step further and develop real time NMR experiments to observe the client remodeling performed over the course of the disaggregation reaction itself. By combining advanced NMR with biophysical and functional assays, we ultimately aim to identify the specific sets of chaperones that, with the Hsp70 system, protect our cells by dissolving disease-linked aggregates and amyloid fibers.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NMR-DISAGG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NMR-DISAGG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

SPECTRODOT (2018)

Hand-held broadband hybrid graphene-quantum dots spectrometer

Read More