Opendata, web and dolomites

SINDAM SIGNED

Sunlight-Induced Nonadiabatic Dynamics of Atmospheric Molecules

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SINDAM project word cloud

Explore the words cloud of the SINDAM project. It provides you a very rough idea of what is the project "SINDAM" about.

plethora    either    dynamics    organic    our    reactions    photophysical    sunlight    observation    ground    appears    gaseous    leads    describe    atmosphere    power    pollution    poorer    launches    reservoir    synergistic    molecules    conducting    answer    contact    scarcely    mechanisms    vastly    troposphere    paramount    absorption    triggered    stimulate    predict    atmospheric    regulations    decisions    photochemical    compounds    neglecting    edge    critical    deviations    attempt    volatile    air    reactive    chemistry    predictive    partly    lack    theoretical    ubiquitous    warming    composition    ing    species    area    context    political    hence    informing    silico    photochemistry    vocs    intermediates    transient    mostly    societal    substantially    oxidation    though    experiments    network    water    quality    voc    environmental    global    incredibly    radicals    predicted    models    inert    breakthroughs    isolation    chemical    surprising    question    computational    excited    initiate    electronic    sindam   

Project "SINDAM" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF DURHAM 

Organization address
address: STOCKTON ROAD THE PALATINE CENTRE
city: DURHAM
postcode: DH1 3LE
website: www.dur.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙499˙457 €
 EC max contribution 1˙499˙457 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF DURHAM UK (DURHAM) coordinator 1˙499˙457.00

Map

 Project objective

Our atmosphere appears to be a reservoir of inert gaseous molecules, while in reality, it is also composed of a plethora of highly reactive molecules and radicals. Among these are the volatile organic compounds (VOCs) that contribute substantially to both global warming and air pollution. Detailed atmospheric models attempt to describe the incredibly complex network of chemical reactions resulting from VOC oxidation in our troposphere and to predict its composition, paramount for informing societal and political decisions and regulations. A surprising observation, though, is that the role of sunlight in the reactions of VOC intermediates is scarcely understood, even though excited-state dynamics, triggered by sunlight absorption, initiate most of the atmosphere’s chemistry. This lack of information is partly due to the challenge in conducting photochemical experiments on transient VOC species. As a result, VOC-related chemical mechanisms are mostly based on a ground electronic state chemistry, leading to some critical deviations between the predicted and observed composition of the atmosphere. Also, vastly neglecting the rich photochemistry of these VOC species leads to a poorer understanding of their resulting environmental impact. This project, SINDAM, launches the field of in silico atmospheric photochemistry by using recent breakthroughs in theoretical and computational chemistry to establish the importance of photochemical processes of VOCs in the atmosphere, either in isolation or in contact with water molecules. SINDAM will answer the simple yet critical question: how ubiquitous are photophysical and photochemical effects in the atmospheric chemistry of VOCs? Hence, this project will stimulate an exciting new synergistic area at the edge between theoretical and atmospheric chemistry, leading to a real, societal impact by improving the predictive power of atmospheric models in the context of global warming and air quality.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SINDAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SINDAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More