Opendata, web and dolomites

SINDAM SIGNED

Sunlight-Induced Nonadiabatic Dynamics of Atmospheric Molecules

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SINDAM project word cloud

Explore the words cloud of the SINDAM project. It provides you a very rough idea of what is the project "SINDAM" about.

chemical    warming    voc    predict    decisions    triggered    partly    species    compounds    conducting    photochemical    regulations    photophysical    environmental    reactive    mechanisms    sindam    dynamics    our    water    leads    paramount    electronic    photochemistry    molecules    gaseous    excited    hence    plethora    scarcely    quality    synergistic    air    isolation    absorption    substantially    organic    oxidation    sunlight    mostly    initiate    pollution    observation    informing    neglecting    troposphere    silico    predictive    chemistry    radicals    context    experiments    launches    political    intermediates    question    atmospheric    answer    reactions    reservoir    though    either    network    attempt    vastly    atmosphere    edge    ing    surprising    computational    deviations    models    power    appears    poorer    global    inert    composition    describe    lack    contact    predicted    vocs    ground    breakthroughs    stimulate    societal    incredibly    area    ubiquitous    theoretical    volatile    transient    critical   

Project "SINDAM" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF DURHAM 

Organization address
address: STOCKTON ROAD THE PALATINE CENTRE
city: DURHAM
postcode: DH1 3LE
website: www.dur.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙499˙457 €
 EC max contribution 1˙499˙457 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF DURHAM UK (DURHAM) coordinator 1˙499˙457.00

Map

 Project objective

Our atmosphere appears to be a reservoir of inert gaseous molecules, while in reality, it is also composed of a plethora of highly reactive molecules and radicals. Among these are the volatile organic compounds (VOCs) that contribute substantially to both global warming and air pollution. Detailed atmospheric models attempt to describe the incredibly complex network of chemical reactions resulting from VOC oxidation in our troposphere and to predict its composition, paramount for informing societal and political decisions and regulations. A surprising observation, though, is that the role of sunlight in the reactions of VOC intermediates is scarcely understood, even though excited-state dynamics, triggered by sunlight absorption, initiate most of the atmosphere’s chemistry. This lack of information is partly due to the challenge in conducting photochemical experiments on transient VOC species. As a result, VOC-related chemical mechanisms are mostly based on a ground electronic state chemistry, leading to some critical deviations between the predicted and observed composition of the atmosphere. Also, vastly neglecting the rich photochemistry of these VOC species leads to a poorer understanding of their resulting environmental impact. This project, SINDAM, launches the field of in silico atmospheric photochemistry by using recent breakthroughs in theoretical and computational chemistry to establish the importance of photochemical processes of VOCs in the atmosphere, either in isolation or in contact with water molecules. SINDAM will answer the simple yet critical question: how ubiquitous are photophysical and photochemical effects in the atmospheric chemistry of VOCs? Hence, this project will stimulate an exciting new synergistic area at the edge between theoretical and atmospheric chemistry, leading to a real, societal impact by improving the predictive power of atmospheric models in the context of global warming and air quality.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SINDAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SINDAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More