Opendata, web and dolomites

SINDAM SIGNED

Sunlight-Induced Nonadiabatic Dynamics of Atmospheric Molecules

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SINDAM project word cloud

Explore the words cloud of the SINDAM project. It provides you a very rough idea of what is the project "SINDAM" about.

excited    lack    sunlight    ing    though    breakthroughs    intermediates    species    experiments    global    reactive    incredibly    informing    launches    triggered    surprising    critical    transient    molecules    chemistry    deviations    mechanisms    initiate    troposphere    power    edge    partly    leads    ground    oxidation    mostly    reservoir    answer    neglecting    our    context    vocs    pollution    voc    synergistic    scarcely    political    isolation    either    volatile    area    ubiquitous    hence    models    dynamics    photochemistry    photochemical    air    atmosphere    appears    substantially    predict    plethora    absorption    composition    electronic    decisions    warming    paramount    societal    observation    conducting    stimulate    contact    vastly    question    chemical    poorer    silico    radicals    theoretical    gaseous    reactions    organic    network    quality    computational    predictive    predicted    regulations    attempt    atmospheric    inert    sindam    water    photophysical    describe    compounds    environmental   

Project "SINDAM" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF DURHAM 

Organization address
address: STOCKTON ROAD THE PALATINE CENTRE
city: DURHAM
postcode: DH1 3LE
website: www.dur.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙499˙457 €
 EC max contribution 1˙499˙457 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF DURHAM UK (DURHAM) coordinator 1˙499˙457.00

Map

 Project objective

Our atmosphere appears to be a reservoir of inert gaseous molecules, while in reality, it is also composed of a plethora of highly reactive molecules and radicals. Among these are the volatile organic compounds (VOCs) that contribute substantially to both global warming and air pollution. Detailed atmospheric models attempt to describe the incredibly complex network of chemical reactions resulting from VOC oxidation in our troposphere and to predict its composition, paramount for informing societal and political decisions and regulations. A surprising observation, though, is that the role of sunlight in the reactions of VOC intermediates is scarcely understood, even though excited-state dynamics, triggered by sunlight absorption, initiate most of the atmosphere’s chemistry. This lack of information is partly due to the challenge in conducting photochemical experiments on transient VOC species. As a result, VOC-related chemical mechanisms are mostly based on a ground electronic state chemistry, leading to some critical deviations between the predicted and observed composition of the atmosphere. Also, vastly neglecting the rich photochemistry of these VOC species leads to a poorer understanding of their resulting environmental impact. This project, SINDAM, launches the field of in silico atmospheric photochemistry by using recent breakthroughs in theoretical and computational chemistry to establish the importance of photochemical processes of VOCs in the atmosphere, either in isolation or in contact with water molecules. SINDAM will answer the simple yet critical question: how ubiquitous are photophysical and photochemical effects in the atmospheric chemistry of VOCs? Hence, this project will stimulate an exciting new synergistic area at the edge between theoretical and atmospheric chemistry, leading to a real, societal impact by improving the predictive power of atmospheric models in the context of global warming and air quality.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SINDAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SINDAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EASY-IPS (2019)

a rapid and efficient method for generation of iPSC

Read More  

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More  

OSIRIS (2020)

Automatic measurement of speech understanding using EEG

Read More