Opendata, web and dolomites

ULTRA-FAST SIGNED

VIDEOGRAPHY OF ULTRAFAST PHENOMENA USING THE FRAME CONCEPT

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ULTRA-FAST project word cloud

Explore the words cloud of the ULTRA-FAST project. It provides you a very rough idea of what is the project "ULTRA-FAST" about.

repetitive    diagnostic    timescales    herein    dynamics    always    photo    color    fluorophores    extremes    resolution    smallest    scientists    efforts    discoveries    physics    permit    scanning    reaction    track    ensemble    science    setup    temporal    nature    experimental    timescale    temporally    image    lifetime    decays    ultrafast    pi    tools    made    date    holds    fluorescence    unify    events    species    coherent    simultaneously    microscopes    parallel    farthest    filaments    creation    scientific    observe    powerful    coding    chemistry    trillion    frames    visualized    invented    resolve    occurring    telescopes    pump    algorithm    insights    spectrally    generate    evolution    spectroscopic    mostly    consumption    faster    videography    tool    relied    recognition    interdisciplinary    packages    frame    frequency    imaging    film    chemical    picosecond    probe    exposures    area    phenomena    objects    intrigued    multiple    constitutes    explore    diagnostics    femtosecond    away    spatiotemporal    plasmas    laser    biology    compatibility   

Project "ULTRA-FAST" data sheet

The following table provides information about the project.

Coordinator
LUNDS UNIVERSITET 

Organization address
address: Paradisgatan 5c
city: LUND
postcode: 22100
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 1˙998˙792 €
 EC max contribution 1˙998˙792 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2024-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUNDS UNIVERSITET SE (LUND) coordinator 1˙998˙792.00

Map

 Project objective

Scientists have always been particularly intrigued by the extremes in nature and made significant efforts to study these; microscopes allow us to observe the smallest objects, while telescopes permit us to explore the largest objects and also those farthest away. The work proposed herein will provide new means and generate insights to phenomena occurring on the shortest timescales in nature. Past methods to probe ultrafast events – occurring on picosecond timescale or faster – have mostly relied on pump/probe scanning, yet these can only measure the dynamics of such processes if they are repetitive. Understanding all spatiotemporal aspects of ultrafast phenomena, however, requires experimental means to spatially, spectrally and temporally resolve them. Recently the PI invented a “coding” imaging concept called Frequency Recognition Algorithm for Multiple Exposures (FRAME) that can film at up to 5 trillion frames per second. To date, FRAME is the only videography method that can unify a femtosecond temporal resolution with spectroscopic compatibility, making it a powerful tool with high potential for new scientific discoveries. This project aims to (i) develop novel diagnostic tools based on FRAME and (ii) apply FRAME videography to study ultrafast events, whose temporal evolution could not be visualized in the past. Ultrafast science is a wide field, making the project highly interdisciplinary. For example, within photo-physics, systems will be developed to film plasmas and laser filaments. Diagnostics will be developed to image the lifetime of coherent states as well as fluorescence decays of two fluorophores in parallel, which holds potential within biology, physics and chemistry. A two-color FRAME setup will be developed to temporally track the creation and consumption of two species in a chemical reaction simultaneously. The ensemble of work-packages proposed herein constitutes a significant step forward in the research area of ultrafast imaging and videography.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ULTRA-FAST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ULTRA-FAST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More