Opendata, web and dolomites

LifeLikeMat SIGNED

Dissipative self-assembly in synthetic systems: Towards life-like materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LifeLikeMat project word cloud

Explore the words cloud of the LifeLikeMat project. It provides you a very rough idea of what is the project "LifeLikeMat" about.

entropy    wp1    reactions    gives    nature    pharmaceutical    materials    electrical    sharp    external    assembled    drive    whereby    polymerization    equilibrium    designed    operate    healing    intrinsically    disassembly    unstable    fuels    convert    inorganic    ubiquitous    lifetimes    exchange    serve    exhibit    wp2    thermodynamic    waste    continuous    sugars    consumption    dissipative    purpose    organisms    dependent    owing    sophisticated    conversion    rationally    static    closer    followed    dynamic    sectors    activated    integrating    tunable    wp3    industries    conceive    homeostasis    modes    ultimate    employ    classes    time    contrast    synthetic    made    oxidation    found    conductivity    organic    nearly    methanol    exist    inherently    spontaneously    co2    structures    lay    stable    living    energy    principles    camouflage    predominantly    building    unconventional    man    self    constructs    varied    foundations    blocks    fabricate    stored    designing    assembly    chemical    colloidal   

Project "LifeLikeMat" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙999˙572 €
 EC max contribution 1˙999˙572 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙999˙572.00

Map

 Project objective

'Living organisms are sophisticated self-assembled structures that exist and operate far from thermodynamic equilibrium and, as such, represent the ultimate example of dissipative self-assembly. They remain stable at highly organized (low-entropy) states owing to the continuous consumption of energy stored in 'chemical fuels', which they convert into low-energy waste. Dissipative self-assembly is ubiquitous in nature, where it gives rise to complex structures and properties such as self-healing, homeostasis, and camouflage. In sharp contrast, nearly all man-made materials are static: they are designed to serve a given purpose rather than to exhibit different properties dependent on external conditions. Developing the means to rationally design dissipative self-assembly constructs will greatly impact a range of industries, including the pharmaceutical and energy sectors.

The goal of the proposed research program is to develop novel principles for designing dissipative self-assembly systems and to fabricate a range of dissipative materials based on these principles. To achieve this goal, we will employ novel, unconventional approaches based predominantly on integrating organic and colloidal-inorganic building blocks.

Specifically, we will (WP1) drive dissipative self-assembly using chemical reactions such as polymerization, oxidation of sugars, and CO2-to-methanol conversion, (WP2) develop new modes of intrinsically dissipative self-assembly, whereby the activated building blocks are inherently unstable, and (WP3&4) conceive systems whereby self-assembly is spontaneously followed by disassembly.

The proposed studies will lead to new classes of 'driven' materials with features such as tunable lifetimes, time-dependent electrical conductivity, and dynamic exchange of building blocks. Overall, this project will lay the foundations for developing new synthetic dissipative materials, bringing us closer to the rich and varied functionality of materials found in nature.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIFELIKEMAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIFELIKEMAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More