Opendata, web and dolomites

EAGER SIGNED

Elucidating the effects of ageing on the nucleoporin-directed neural cell type-specific nuclear architecture and gene regulation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "EAGER" data sheet

The following table provides information about the project.

Coordinator
DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV 

Organization address
address: SIGMUND FREUD STRASSE 27
city: BONN
postcode: 53127
website: www.dzne.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙499˙998 €
 EC max contribution 1˙499˙998 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV DE (BONN) coordinator 1˙499˙998.00

Map

 Project objective

Ageing is one of the most critical risk factors for neurological and psychiatric diseases. However, the biological links between physiological ageing and pathological development are still largely unknown. A solid understanding of the biology of brain ageing will thus be a key to developing the means to treat these diseases. Since neurons in the brain are mostly generated during development with limited capacity of replacement after birth, they need to maintain their identity and function throughout our lives. This project aims at seeking a link between the fundamental mechanism underlying the long-term maintenance of neural identity and effects of ageing on that. We recently discovered that a cell type-specific nuclear architecture organized by nucleoporins in cooperation with a key transcription factor (TF), work as a structural gatekeeper for the maintenance of neural progenitor cells (NPs). Strikingly, nucleoporins are the most long-lived proteins in a cell and are known to be damaged during brain ageing. Thus, the proposed experiments will test a specific hypothesis that the nucleoporin-TF directed nuclear architecture is a fundamental principle governing cell type-specific gene regulation, and that pathological ageing impairs that critical relationship. To test this hypothesis, we will use interdisciplinary approaches. First, the changes of molecular constituents of nucleoporin-TF partnerships from NPs into the post-mitotic neurons are probed. Second, the roles of identified partnerships in the maintenance of neuronal identity and function will be investigated using biochemical, imaging, genome-wide and behavioural approaches. Efforts will be directed toward studying the effects of ageing and Alzheimer’s diseases on the identified mechanisms. The successful completion of this research will uncover a novel aspect of regulation in the maintenance of cellular identity and open up a new field of research in neuroscience.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EAGER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EAGER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SkewPref (2019)

Skewness Preferences – Human attitudes toward rare, high-impact risks

Read More  

LapIt (2019)

Making AML treatment a clinical reality: A novel anti-IL7 receptor antibody to deliver Lap to 5LO positive cells

Read More  

INFANT MEMORIES (2020)

Dissecting hippocampal circuits for the encoding of early-life memories

Read More