Opendata, web and dolomites

METANICHE SIGNED

Regulation of bone metastases by age-associated angiocrine signals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "METANICHE" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙496˙613 €
 EC max contribution 1˙496˙613 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 1˙496˙613.00

Map

 Project objective

Blood vessels form a versatile transport network and provide inductive signals called angiocrine factors to regulate tissue-specific functions. Blood vessels in bone are heterogeneous with distinct capillary subtypes that exhibit remarkable alterations with age. Bone is the most prevalent site of metastasis, and ageing is linked to the reactivation of dormant tumor cells (dorTCs) and metastatic relapse. Bone remodeling processes are also associated with metastatic relapse. Here, I will define the role of distinct vascular niches in regulating the fate of DTCs in bone. Finally, I will unravel the age-related angiocrine factors and identify key angiocrine signals that drive the reactivation of dorTCs. I will employ a powerful combination of advanced 3D, intravital, and whole body imaging, cell specific-inducible mouse genetics, transcriptional profiling and bioinformatics in an unprecedented manner to achieve my goals. New cutting-edge techniques such as advanced 3D and 4D bone imaging are important aspects of my proposal. I will also define the role of highly promising novel candidate age-related angiocrine signals with sophisticated inducible endothelial-specific humanised mouse models. My work will break new ground by unraveling a repertoire of age-related angiocrine factors and will contribute to a wider scientific community in bone, blood, and age-related diseases. This interdisciplinary work at the frontiers of bone, cancer and vascular biology will provide the first conceptual link between vascular ageing and bone metastasis and will contribute towards the development of therapeutic strategies for targeting DTCs in bone.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "METANICHE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "METANICHE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  

TroyCAN (2020)

Redefining the esophageal stem cell niche – towards targeting of squamous cell carcinoma

Read More