Opendata, web and dolomites

VarPL SIGNED

Specificity or generalization? Neural mechanisms for perceptual learning with variability

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "VarPL" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS 

Organization address
address: Robert-Koch-Strasse 40
city: GOETTINGEN
postcode: 37075
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙867˙332 €
 EC max contribution 1˙867˙332 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS DE (GOETTINGEN) coordinator 853˙691.00
2    DEUTSCHES PRIMATENZENTRUM GMBH DE (GOTTINGEN) participant 1˙013˙641.00

Map

 Project objective

The visual system is equipped with a powerful plasticity mechanism, perceptual learning, which serves to improve perception of consistent inputs. However, the signals it receives are extremely variable. How variability affects perceptual learning is unclear. Here, I ask how the visual system tackles the challenge of variability for learning: variability could impair perceptual learning, or, like in language and motor learning, result in the ability to generalize from trained to new materials. To create effective training programs, e.g., for clinical applications, it is crucial to know how to reap the benefits of variability, or, conversely, to overcome the challenges variability poses. Yet, the neural mechanisms by which the visual system copes with variability are unknown, hampering this endeavor. To close this gap, I propose a new theory, derived from the architecture of cortex: I hypothesize that perceptual learning is not limited to early visual areas, but flexibly occurs at a ‘sweet spot’ along the visual hierarchy whose functional properties match the variability in the given environment. To test this theory, I build on a multimodal, multispecies approach I have previously developed to study learning: I will identify general principles by which variability affects perceptual learning in behavior, dissect the critical neural circuits in macaque monkeys and humans with neuroimaging, determine the functional characteristics of neurons contributing to learning by electrophysiology, and establish their causal relevance using electrical stimulation. This unique combination of species and techniques is ideally suited to unravel the neural mechanism for coping with variability in perceptual learning. By elucidating the computations and mechanisms by which the visual system handles one of the most characteristic aspects of its inputs, I aim to provide the basis for neuroscience-based training paradigms that help alleviate vision deficits.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VARPL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VARPL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

U-HEART (2018)

Unbreakable HEART: a reconfigurable and self-healing isolated dc/dc converter (U-HEART)

Read More  

AllergenDetect (2019)

Comprehensive allergen detection using synthetic DNA libraries

Read More  

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More