Opendata, web and dolomites

QUCUBE SIGNED

3D integration technology for silicon spin qubits

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QUCUBE project word cloud

Explore the words cloud of the QUCUBE project. It provides you a very rough idea of what is the project "QUCUBE" about.

qucube    predict    technological    entangled    electrical    atoms    qubit    optical    bits    changed    spin    elementary    computers    superposition    consisting    wiring    essentially    code    dimensional    freedom    unexploited    sensing    dauntingly    hundreds    decoherence    electrostatically    architecture    containing    host    dots    surface    qubits    processor    ing    fault    industrial    compensated    least    layout    particles    theory    phenomena    hamiltonians    uncontrolled    interact    leverages    103    computing    operated    computer    foundational    powers    purposely    originally    quantum    encoded    unpredictable    logical    computational    microprocessors    served    planes    microscopic    macroscopic    entanglement    describe    lines    scalable    readout    semiconductors    schemes    remained    gate    inaccessible    designed    tolerant    degrees    fidelity    topological    transistors    onto    environment    separated    small    living    accommodate    silicon    modern    metal    mechanics    unprecedented    millions    conceived    opening    multiplexing    world    charge    realize    digital    array    individually    confined    free    evolution    simulations    physical   

Project "QUCUBE" data sheet

The following table provides information about the project.

Coordinator
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

Organization address
address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015
website: www.cea.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 13˙990˙460 €
 EC max contribution 13˙990˙460 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-SyG
 Funding Scheme ERC-SyG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES FR (PARIS 15) coordinator 10˙980˙316.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 3˙010˙143.00

Map

 Project objective

Originally conceived to describe the microscopic world of atoms and elementary particles, the theory of quantum mechanics has eventually served to predict macroscopic phenomena, e.g. the electrical and optical properties of semiconductors, resulting a wide range of technological applications that have changed our way of living. Foundational properties like quantum superposition and entanglement, however, have remained essentially unexploited. Their use may allow achieving computational powers inaccessible to classical digital computers, opening unprecedented opportunities. In a quantum computer, the elementary bits of information are encoded onto two-level quantum systems called qubits. Since qubits interact with the uncontrolled degrees of freedom of their environment, the evolution of their quantum states can become quickly unpredictable, leading to a reduced qubit fidelity. In topological quantum computing schemes, e.g. the surface code, the reduced fidelity is compensated by using decoherence-free logical qubits consisting of a large number (~103) of entangled physical qubits. As a result, a useful quantum processor should host at least millions of qubits. Although dauntingly large, this number is still small as compared to the number of transistors in a modern silicon microprocessors. QuCube leverages industrial-level silicon technology to realize a quantum processor containing hundreds of spin qubits confined to a two-dimensional array of electrostatically defined silicon quantum dots. To face the challenge of addressing the qubits individually, we use a three-dimensional architecture purposely designed to accommodate, on separated planes, the charge sensing devices necessary for qubit readout, and the metal gate lines for the electrical control and measurement. The gate lines are operated according to a multiplexing principle, enabling a scalable wiring layout. We shall implement fault-tolerant logical qubits and quantum simulations of complex Hamiltonians

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUCUBE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUCUBE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

PEGASOS (2019)

Photon Emitting Gated Arrays for Scalable On-chip quantum Systems

Read More  

PonD (2019)

Particles-on-Demand for Multiscale Fluid Dynamics

Read More