Opendata, web and dolomites

SPINAPSE SIGNED

Creating complexity: toward atomic spin-based neural hardware

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SPINAPSE" data sheet

The following table provides information about the project.

Coordinator
STICHTING KATHOLIEKE UNIVERSITEIT 

Organization address
address: GEERT GROOTEPLEIN NOORD 9
city: NIJMEGEN
postcode: 6525 EZ
website: www.radboudumc.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 2˙357˙390 €
 EC max contribution 2˙357˙390 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING KATHOLIEKE UNIVERSITEIT NL (NIJMEGEN) coordinator 2˙357˙390.00

Map

 Project objective

The growing trend in global electricity consumption has created a new challenge for materials-based science: to find computational paradigms toward ICT that are not only smaller and faster, but also energy-efficient. A new source of inspiration is the human brain, which consumes a mere 20 W of energy, while a supercomputer consumes about 10 MW. The emerging field of brain-inspired hardware aims at utilizing physical phenomena in high-quality materials toward pattern recognition and energy- efficient ICT. The goal of this project is to adapt the principles of magnetism toward brain-inspired hardware, utilizing individual and coupled atomic spins. The ultimate aim of SPINAPSE is to probe the feasibility and create proof-of-concept systems, which demonstrate computational principles such as pattern recognition. I define three objectives, which address understanding magnetism in the three most prominent neural models: (1) Hopfield model, (2) Perceptron, (3) Reservoir computing. The strategy is to utilize the so-called spin workbench, based on low-temperature scanning tunneling microscopy, as a platform to create tailored spin arrays with atomic-scale control. This method combines single atom magnetic imaging and atom-scale fabrication, enabling the control of the magnetic interactions and dynamics between ensembles of atoms, atom by atom. We will construct bottom-up magnetic nanostructures to implement all-spin and atomic-scale based neural hardware. We will deliver a new state of the art in magnetic imaging, including (a) developing the spin workbench with a newly built 30 mK magnetic STM facility, defining a new state of the art in magnetic imaging worldwide, and (b) time-resolved imaging to probe the magnetization dynamics of stochastic spin arrays at milliKelvin temperatures. The outcome of SPINAPSE will deliver a new state of the art, new fundamental understandings, and create proof-of-concept technologies for atomic-scale brain-inspired hardware.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPINAPSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPINAPSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TroyCAN (2020)

Redefining the esophageal stem cell niche – towards targeting of squamous cell carcinoma

Read More  

PROCOMM (2019)

Commercialisation of Proteus

Read More  

SkewPref (2019)

Skewness Preferences – Human attitudes toward rare, high-impact risks

Read More