Opendata, web and dolomites


Truly refreshing document digitalisation Unlock the full potential of your documents using machine learning

Total Cost €


EC-Contrib. €






 MINT.extract project word cloud

Explore the words cloud of the MINT.extract project. It provides you a very rough idea of what is the project "MINT.extract" about.

businesses    efficient    business    estimate    types    read    7m    incredibly    accessible    goes    transform    template    thanks    purpose    employed    automating    intelligence    completion    digitization    2025    artificial    revenues    valuable    driving    database    documents    learning    disruptive    document    employees    manual    transformation    integrating    big    tables    80    automated    90    quality    engine    repetitive    fundamental    costly    error    2018    unstructured    hire    x54    extraction    5trillions    readable    images    gdp    turicode    company    digital    delivers    requisite    25m    13    innovative    insurance    digitalization    policies    profit    mint    orders    purchase    reduce    xml    prone    accumulated    structured    retrieval    human    solutions    query    language    ai    extract    generate    roi    superior    diverse    analytics    everyone    additional    data    consuming    form    create    alternative    add    around    18    lots    representations    reaching    time    routine    invested   

Project "MINT.extract" data sheet

The following table provides information about the project.


Organization address
postcode: 8406
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2019-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TURICODE AG CH (WINTERTHUR) coordinator 50˙000.00


 Project objective

Around 80% of relevant business data is unstructured. To make valuable information from documents available for further analysis, lots of resources are invested in repetitive, time-consuming, error-prone and costly manual work. Efficient alternative solutions could reduce by 90% the time and costs employed in such tasks by any business. Digitization, i.e. transformation of human-readable documents into a digital form, is among the most common factors driving digitalization and a fundamental pre-requisite for automated text and data analytics. Digitization in EU could add €2.5trillions to GDP in 2025 MINT.extract is a disruptive information retrieval engine that delivers incredibly advanced document analysis capabilities, thanks to our innovative own-developed purpose-built document query language and AI based learning system. Using methods of artificial intelligence to transform unstructured documents into structured representations (database, XML…) and to read document elements (text, images, tables) as a human would do, our technology goes beyond current template-based solutions by automating many routine business processes and enables big data by integrating data from documents. We aim to create a generic learning system that can be applied to a diverse set of document types (e.g. insurance policies, purchase orders...) and delivers fully automated results in a quality that is superior to current manual data extraction. With MINT.extract we will help businesses to transform their documents to value: making valuable information accessible for everyone. For our company, Turicode. We estimate that 5 years after Phase 2 completion, MINT.extract will bring us additional revenues of €18,7M (x54 revenues of 2018), allowing us to hire 50 new employees and generate €8,25M accumulated profit, reaching a ROI of 3,13.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MINT.EXTRACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MINT.EXTRACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

MCBD (2019)


Read More  

SQP (2019)

Opening new markets for Single Quantum Photodetectors

Read More  

In-Heal (2019)

Standardised administration device for raw medical herbs

Read More