Opendata, web and dolomites


Towards Efficient Production of Sustainable Solar Fuels

Total Cost €


EC-Contrib. €






Project "ECLIPSE" data sheet

The following table provides information about the project.


Organization address
address: Raemistrasse 101
postcode: 8092

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

With more energy from the sun striking the earth's surface in an hour than is consumed annually by fossil fuels, solar energy has the potential to provide significant part of the required global energy, in addition to substantially reducing the emissions of greenhouse gases. Two of the most severe limiting factors of using solar power are the inconsistency of the power output, due to the day/night cycle and weather conditions, and the transportation issues due to geographical location. Solar fuels, produced by combining concentrated solar power with thermochemical processes, are a promising concept to overcome both limitations. These fuels, acting as chemical energy carriers, can be generated at suitable sites and easily transported worldwide, where they can be stored and used. Current methods for solar fuel generation are based on a 2-step reduction-oxidation cycle, with each step at different pressure and temperature, thus creating technological difficulties. Moreover, the solar-to-fuel conversion efficiency of the best process is less than 6%. The goal of this research is to develop a novel method for solar thermochemical splitting of CO2 and H2O, achieving high conversion efficiency. To do so, a unique approach utilizing the use of Ceria membranes will be investigated. The research will include rigorous modelling of the physics, followed by a detailed characterization and optimization, providing a solid understanding of the overall process for the first time. In addition, a novel configuration for the solar reactor will be developed, with steady-state operation and heat recovery, a challenging feat requiring innovative design capable of operating at 1600°C. Following the theoretical research, a large scale (50kW) solar reactor will be designed and fabricated, using the acquired knowledge. The experimental data that will be acquired, combined with the theoretical knowledge, will lead to major advances in the field of solar fuels and energy production.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ECLIPSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ECLIPSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

FrogsInSpace (2019)

From ecology to neurobiology: spatial cognition in rainforest frogs

Read More