Opendata, web and dolomites

GREEN-FRC SIGNED

Fibre Reinforced Concrete with Recycled and Waste Materials Optimised for Improved Sustainability of Urban Projects

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "GREEN-FRC" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT POLITECNICA DE CATALUNYA 

Organization address
address: CALLE JORDI GIRONA 31
city: BARCELONA
postcode: 8034
website: www.upc.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 160˙932 €
 EC max contribution 160˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-02-03   to  2022-02-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT POLITECNICA DE CATALUNYA ES (BARCELONA) coordinator 160˙932.00

Map

 Project objective

Reinforced doncrete urban infrastructure poses significant, insufficiently addressed, environmental challenges due to impacts from cement, natural aggregate and steel reinforcement production. This proposal focuses on integrating fibre reinforced concrete (FRC) with “green” concretes produced with waste and recycled materials. The large scatter of current FRC characterisation tests leads to conservative structural design and the incomplete understanding of waste and recycled materials’ effects on “green” concrete properties leads to quality control challenges. As a result, existing standards and design codes are not comprehensive and the market uptake of these concretes is low. This action proposes a synergy of FRC and “green” concretes to achieve fully sustainable urban infrastructure. The action will develop and optimise structural-grade “green” FRC (G-FRC) with different recycled and waste materials for maximising sustainability; develop novel G-FRC characterisation tests with reduced result scatter; formulate performance-based indicators for recycled and waste materials used in G-FRC to facilitate quality control; and develop design guidelines for G-FRC structures with full-scale structural test verification and in-situ application, within 24 months of project duration. The expertise of the experienced researcher (ER), Dr. Nikola Tošić, and the supervisor, Dr. Alberto de la Fuente Antequera, are fully complementary and will enable them to develop novel research techniques through a two-way knowledge transfer and comprehensive training activities for the ER. The project will engage Smart Engineering Ltd for industrial application of project results. Comprehensive dissemination and communication measures focusing on different target audiences are formulated. A carefully thought through and detailed work plan, resource use, and contingency measures for risk mitigation have been developed to ensure a smooth and timely project implementation with maximised impact.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GREEN-FRC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GREEN-FRC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PROTEAN (2019)

Prospective Environmental Assessment of Urban Agriculture Emerging-Systems

Read More  

PRISME (2019)

PRogram for ISolation Manufacturing in Europe (PRISME)

Read More  

LIGHTMATT-EXPLORER (2019)

Experimental determination of the paraxial-vectorial limit of light-matter interactions

Read More