Opendata, web and dolomites

BispecificsThatClick SIGNED

Combinatorial Antibody Synthesis for the Discovery of New Anti-Tumour Immunomodulators

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BispecificsThatClick project word cloud

Explore the words cloud of the BispecificsThatClick project. It provides you a very rough idea of what is the project "BispecificsThatClick" about.

simultaneously    led    strategies    monoclonal    inefficiency    substrates    healthy    demand    lie    combinations    inverse    acceleration    medicine    tagged    condensation    trigger    select    selectively    efficiency    binding    bioorthogonal    linkers    library    scaffold    consist    cancer    classic    kill    cells    methodology    cell    combination    bsabs    extense    throughput    significantly    lot    assembled    content    tumour    synthesis    imaging    bind    of    malignant    site    linear    herein    mabs    electron    ligation    treatments    responsible    mode    reactions    platform    specificities    treatment    bispecific    immune    anti    anticancer    constructs    carcinogenic    antigen    diels    alder    slow    serve    fight    therapeutic    tissues    modern    tested    harnessing    antigens    immunondulatory    identification    antibodies    speed    immunology    tedious    tag    tools    community    lack    scientific    efficacy    modality    action   

Project "BispecificsThatClick" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-06-03   to  2021-06-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 212˙933.00

Map

 Project objective

Cancer represents one of the major challenges for modern medicine as we still lack tools to selectively target malignant over healthy tissues. The main issues with state of the art anti-cancer treatments lie on their inefficiency and their associated side-effects. Improving this treatments has focused a lot of attention of the scientific community and has led to the development of new strategies. Harnessing our own immune system to fight malignant cells is one of the strategies with promising potential to improve cancer treatments, although challenges still remain. An emerging therapeutic modality to trigger our immune system against carcinogenic tissues are bispecific antibodies (bsAbs). bsAbs are the combination of two antigen binding specificities on a common scaffold. The potential of these constructs to bind to two antigens can be used to simultaneously target cancer cells and the immune cell which will effectively kill it. The problem of bsAbs is their slow and tedious production process, which is responsible for their linear development. Herein we propose a methodology to speed up and improve the efficiency of their production. Our approach will consist in using novel site-specific bioorthogonal ligation reactions to tag monoclonal antibodies (mAbs) with linkers that will serve as substrates for an inverse electron demand Diels Alder condensation. By condensation of different combinations of tagged mAbs a library of bsAbs will be assembled. The immunondulatory properties of the bsAbs will be tested in high throughput using a high content imaging platform. We will be able to select potential bsAbs for anticancer treatment from our extense library which will study in more depth using classic immunology methods to determine their mode of action and their anti tumour efficacy. The acceleration of both the synthesis and identification of relevant bsAbs for anticancer treatments would significantly increase the presence and value of this technology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BISPECIFICSTHATCLICK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BISPECIFICSTHATCLICK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MAGIMOX (2019)

Nanometre scale imaging of magnetic perovskite oxide thin films using scanning transmission electron microscopy

Read More  

MechanoGenetic (2019)

Role of mechanical forces in cell-matrix adhesion sites

Read More  

COMBATTB (2019)

Comprehensive Mechanisms of Bacterial Antibiotic Tolerance in Mycobacterium Tuberculosis

Read More