Opendata, web and dolomites

PROTOBAC SIGNED

Engineering of complex protocells by micro-compartmentalization of living bacteria

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PROTOBAC project word cloud

Explore the words cloud of the PROTOBAC project. It provides you a very rough idea of what is the project "PROTOBAC" about.

physical    segregation    bound    materials    proto    stephen    perform    combined    outcome    protoeukaryote    designs    metabolism    plasmids    hosting    organization    functionally    sensing    starting    mitochondria    biological    structural    bacterial    expertise    assemblage    internally    nuclear    compartmentalized    functional    artificial    material    colonies    precisely    lack    sequestration    synthesis    compartmentalization    construction    group    minimal    protocells    spatial    biology    efforts    metabolic    pioneering    mann    life    organelles    components    question    expression    exhibiting    protocell    introducing    membrane    university    gene    inanimate    answer    lipids    rudimentary    disruption    few    organisational    engineering    behaviours    forms    multidisciplinary    synthetic    biotechnology    frs    living    replication    active    loaded    energy    functions    genetic    capacity    professor    complexity    endomembrane    bacteria    transition    instead    first    transduction    last    suitable    microbiology    bristol    cellular    manifestations   

Project "PROTOBAC" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF BRISTOL 

Organization address
address: BEACON HOUSE QUEENS ROAD
city: BRISTOL
postcode: BS8 1QU
website: www.bristol.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2021-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 212˙933.00

Map

 Project objective

The engineering of artificial cellular systems (i.e. protocells) exhibiting rudimentary life-like properties, such as minimal metabolism, sensing or replication, gene expression and compartmentalization, represents the most suitable path to undertake to answer the important question on how inanimate systems can transition into proto-living manifestations of physical matter. However, most of the current protocell designs still lack the structural and organisational complexity required for them to perform advanced functions and behaviours. Instead of starting from non-living materials, the aim of this proposal is precisely to design and construction of complex multi-component protocells based on the controlled sequestration and disruption of compartmentalized living bacterial colonies. The result protocells will bound by an assemblage of bacterial membrane lipids and internally loaded with a large number of functionally active metabolic and genetic components. Furthermore, the structural and functional complexity of the bacteria-derived protocells will be increased by introducing several important biological organelles such as proto-nuclear, proto-mitochondria components and endomembrane system, which is expected to produce the first example of protoeukaryote. The previous expertise of the applicant in the field of biotechnology, synthetic biology and microbiology will be applied to the multidisciplinary and emerging field of protocells in which the hosting group of Professor Stephen Mann FRS at the University of Bristol has been pioneering over the last few years. The key outcome of the combined research efforts of the applicant and the Mann group will lead to the synthesis of bacteria derived protocells and develop their advanced forms capable of increased energy (metabolic) capacity and transduction, spatial segregation of genetic material (plasmids etc), and higher-order organization and processing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROTOBAC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROTOBAC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More  

ErgThComplexSys (2020)

Ergodic theory for complex systems: a rigorous study of dynamics on heterogeneous networks

Read More