Explore the words cloud of the BB-SLM project. It provides you a very rough idea of what is the project "BB-SLM" about.
The following table provides information about the project.
Coordinator |
UNIVERSITE DE BORDEAUX
Organization address contact info |
Coordinator Country | France [FR] |
Total cost | 196˙707 € |
EC max contribution | 196˙707 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2020 |
Duration (year-month-day) | from 2020-03-01 to 2022-02-28 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSITE DE BORDEAUX | FR (BORDEAUX) | coordinator | 196˙707.00 |
The development of photonics technologies implies ever-increasing agile optical components operating enabling the manipulation of the spatial degrees of freedom of light over broad spectral ranges. To date, spatial light modulators is a class of digital optical devices offering versatile management of light, however, state-of-the-art devices are operating efficiently only at a given wavelength. Here we propose to develop a digitally controlled spatial light modulator combining efficiency with intrinsically broadband behavior spanning the whole visible spectrum. This will be accomplished by integrating the advantage of spin controlled achromatic geometric Berry phase with broadband polarization-dependent circular Bragg reflection from spatially modulated chiral liquid crystals. Despite more than a century-long history of liquid crystals, the first report on the accumulation of Berry phase due to Bragg reflection came only very recently from the research group lead by the host scientist. The proposed two-year project to develop spatial light-modulators based on this basic physical principle. By doing so, we aim at controlling the interaction between the polarization state of light with its spatial degrees of freedoms (i.e., the spin-orbit interaction of light) by exploiting the inherently robust and diverse topological structures that spontaneously appear in anisotropic soft condensed matter systems such as liquid crystals. In particular, we will take advantage of both the self-organization orientational processes occurring in liquid crystals and their extreme sensitivity to external fields. By implementing a recently demonstrated physical concepts into a novel generation of spin-orbit optical devices enabling spatial control of the optical phase over a broad spectral range, this project will offer further possible applications for advanced photonic technologies, for instance in optical data processing, optical imaging and optical manipulation.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BB-SLM" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "BB-SLM" are provided by the European Opendata Portal: CORDIS opendata.